Home
Class 12
MATHS
Find the value of expression 1 / (cos 2...

Find the value of expression ` 1 / (cos 290^@) + 1 / (sqrt3 sin 250^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \frac{1}{\cos 290^\circ} + \frac{1}{\sqrt{3} \sin 250^\circ} \), we can follow these steps: ### Step 1: Rewrite the angles First, we can rewrite the angles in the expression: - \( \cos 290^\circ = \cos(270^\circ + 20^\circ) \) - \( \sin 250^\circ = \sin(270^\circ - 20^\circ) \) ### Step 2: Use trigonometric identities Using the trigonometric identities: - \( \cos(270^\circ + \theta) = -\sin \theta \) - \( \sin(270^\circ - \theta) = -\cos \theta \) We can rewrite the expression: \[ \frac{1}{\cos 290^\circ} = \frac{1}{-\sin 20^\circ} = -\frac{1}{\sin 20^\circ} \] \[ \frac{1}{\sqrt{3} \sin 250^\circ} = \frac{1}{\sqrt{3} (-\cos 20^\circ)} = -\frac{1}{\sqrt{3} \cos 20^\circ} \] ### Step 3: Combine the fractions Now we can combine the two fractions: \[ -\frac{1}{\sin 20^\circ} - \frac{1}{\sqrt{3} \cos 20^\circ} \] This can be written as: \[ -\left(\frac{1}{\sin 20^\circ} + \frac{1}{\sqrt{3} \cos 20^\circ}\right) \] ### Step 4: Find a common denominator The common denominator for the two fractions is \( \sin 20^\circ \cdot \sqrt{3} \cos 20^\circ \): \[ -\left(\frac{\sqrt{3} \cos 20^\circ + \sin 20^\circ}{\sin 20^\circ \cdot \sqrt{3} \cos 20^\circ}\right) \] ### Step 5: Simplify the numerator Now we can simplify the numerator: \[ -\left(\frac{\sqrt{3} \cos 20^\circ + \sin 20^\circ}{\sin 20^\circ \cdot \sqrt{3} \cos 20^\circ}\right) \] ### Step 6: Use angle subtraction formula Recognizing that \( \sqrt{3} \cos 20^\circ + \sin 20^\circ \) can be expressed using the sine of a difference: \[ \sqrt{3} \cos 20^\circ + \sin 20^\circ = 2 \left(\frac{\sqrt{3}}{2} \cos 20^\circ + \frac{1}{2} \sin 20^\circ\right) = 2 \sin(20^\circ + 60^\circ) \] Thus, we have: \[ -\frac{2 \sin(80^\circ)}{\sin 20^\circ \cdot \sqrt{3} \cos 20^\circ} \] ### Step 7: Final simplification Since \( \sin(80^\circ) = \cos(10^\circ) \), we can rewrite the expression: \[ -\frac{2 \cos(10^\circ)}{\sin 20^\circ \cdot \sqrt{3} \cos 20^\circ} \] ### Step 8: Evaluate the expression Now we can evaluate the expression: \[ -\frac{2}{\sqrt{3}} \cdot \frac{\cos(10^\circ)}{\sin(20^\circ) \cos(20^\circ)} \] Using \( \sin(2\theta) = 2 \sin \theta \cos \theta \): \[ \sin(40^\circ) = 2 \sin(20^\circ) \cos(20^\circ) \] Thus, we have: \[ -\frac{2 \cos(10^\circ)}{\sqrt{3} \cdot \frac{1}{2} \sin(40^\circ)} = -\frac{4 \cos(10^\circ)}{\sqrt{3} \sin(40^\circ)} \] ### Final Result After simplification, we find that the expression evaluates to: \[ \frac{4}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the values of sin (cos−1 3/5)

Let x=sin1^@ then find the value of the expression 1/(cos0^@cos1^@)+1/(cos1^@cos2^@)+....+1/(cos44^@cos45^@)

Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@)

Find the value of the expression sin[cot^(-1){cos (pi/2)}]

Find the value of : sin^(-1) (sqrt(3)/2)

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

Find the value of the expression sin[cot^(-1){cos(tan^11)}]

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]