Home
Class 12
MATHS
If x+1/x=2 cos theta, then the value of...

If `x+1/x=2 cos theta`, then the value of `x^n+1/x^n`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x + \frac{1}{x} = 2 \cos \theta \) and we need to find the value of \( x^n + \frac{1}{x^n} \), we can follow these steps: ### Step 1: Square the given equation Starting with the equation: \[ x + \frac{1}{x} = 2 \cos \theta \] We square both sides: \[ \left( x + \frac{1}{x} \right)^2 = (2 \cos \theta)^2 \] This gives us: \[ x^2 + 2 + \frac{1}{x^2} = 4 \cos^2 \theta \] Rearranging this, we find: \[ x^2 + \frac{1}{x^2} = 4 \cos^2 \theta - 2 \] ### Step 2: Use the double angle identity We can simplify \( 4 \cos^2 \theta - 2 \) using the double angle identity: \[ 4 \cos^2 \theta - 2 = 2(2 \cos^2 \theta - 1) = 2 \cos 2\theta \] Thus, we have: \[ x^2 + \frac{1}{x^2} = 2 \cos 2\theta \] ### Step 3: Cube the original equation Now, we will cube the original equation: \[ \left( x + \frac{1}{x} \right)^3 = (2 \cos \theta)^3 \] Using the cube expansion formula: \[ x^3 + 3\left( x + \frac{1}{x} \right) + \frac{1}{x^3} = 8 \cos^3 \theta \] Substituting \( x + \frac{1}{x} = 2 \cos \theta \): \[ x^3 + \frac{1}{x^3} + 6 \cos \theta = 8 \cos^3 \theta \] Rearranging gives: \[ x^3 + \frac{1}{x^3} = 8 \cos^3 \theta - 6 \cos \theta \] ### Step 4: Use the triple angle identity We can express \( 8 \cos^3 \theta - 6 \cos \theta \) using the triple angle formula: \[ 8 \cos^3 \theta - 6 \cos \theta = 2 \cos 3\theta \] Thus, we have: \[ x^3 + \frac{1}{x^3} = 2 \cos 3\theta \] ### Step 5: Generalize to \( n \) From the pattern observed, we can generalize that: \[ x^n + \frac{1}{x^n} = 2 \cos n\theta \] This leads us to the final result: \[ \boxed{2 \cos n\theta} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If x^2-2xcos theta+1=0 , then the value of x^(2n)-2x^n cosntheta+1, n in N is equal to

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/(2cos^2theta)=0, then find the maximum value of x1 2+x2 2dot

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

The real valued function f(x)=(a^x-1)/(x^n(a^x+1)) is even, then the value of n can be

If cos theta = (2x)/(1+x^2) , find the values of sin theta and cot theta [Given x^2 lt 1 ]

Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a_1x+a_2x^2+ and that a1 ^2=2a_2 then the value of n is.

If x_1, x_2, x_3,........x_n are the roots of x^n + ax + b = 0 , then the value of (x_1 - x_2)(x_1 - x_3) (x_1 - x_4) .......(x_1 – x_n) is equal to

If x = sqrt((n-1)/(n+1)) , find the value of (x/(x-1))^2+(x/(x+1))^2

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is