Home
Class 12
MATHS
If alpha and beta are distinct roots of ...

If `alpha` and `beta` are distinct roots of `acostheta+b sintheta=c ,` prove that `sin(alpha+beta)=(2a b)/(a^2+b^2)`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha\ &\ beta satisfy the equation, a cos2theta+b sin2theta=c then prove that : cos^2alpha+cos^2beta=(a^2+a c+b^2)/(a^2+b^2)

If alpha "and " beta be two distinct real numbers such that (alpha-beta) ne 2 n pi for any integer n satisfying the equations a cos theta + b sin theta =c then prove that (i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If sin alpha+sin beta=a\ a n d\ cosalpha+cosbeta=b , show that : sin(alpha+beta)=(2"a b")/(a^2+b^2)

If alpha and beta are the roots of x^(2)+ax+b=0 , then prove that (alpha)/(beta) is a root of the equation bx^(2)+(2b-a^(2))x+b=0