Home
Class 12
MATHS
Find the value tan (pi/5)+2tan((2pi)/5)+...

Find the value `tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \tan\left(\frac{\pi}{5}\right) + 2\tan\left(\frac{2\pi}{5}\right) + 4\cot\left(\frac{4\pi}{5}\right) \), we can follow these steps: ### Step 1: Identify the angles Let \( \theta = \frac{\pi}{5} \). Therefore, we have: - \( \tan\left(\frac{\pi}{5}\right) = \tan(\theta) \) - \( \tan\left(\frac{2\pi}{5}\right) = \tan(2\theta) \) - \( \cot\left(\frac{4\pi}{5}\right) = \cot(\pi - \theta) = -\tan(\theta) \) ### Step 2: Calculate \( \tan(\theta) \) Using the known value: \[ \tan\left(\frac{\pi}{5}\right) = \tan(36^\circ) = \sqrt{5} - 2 \] ### Step 3: Calculate \( \tan(2\theta) \) Using the double angle formula: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Substituting \( \tan(\theta) = \sqrt{5} - 2 \): \[ \tan(2\theta) = \frac{2(\sqrt{5} - 2)}{1 - (\sqrt{5} - 2)^2} \] Calculating \( (\sqrt{5} - 2)^2 \): \[ (\sqrt{5} - 2)^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5} \] Thus, \[ 1 - (\sqrt{5} - 2)^2 = 1 - (9 - 4\sqrt{5}) = 4\sqrt{5} - 8 \] Now substituting back: \[ \tan(2\theta) = \frac{2(\sqrt{5} - 2)}{4\sqrt{5} - 8} = \frac{\sqrt{5} - 2}{2(\sqrt{5} - 2)} = \frac{1}{2} \] ### Step 4: Calculate \( \cot(4\theta) \) Since \( \cot(4\theta) = -\tan(\theta) \): \[ \cot\left(\frac{4\pi}{5}\right) = -\tan\left(\frac{\pi}{5}\right) = -(\sqrt{5} - 2) \] ### Step 5: Substitute values into the expression Now substituting all values into the original expression: \[ \tan\left(\frac{\pi}{5}\right) + 2\tan\left(\frac{2\pi}{5}\right) + 4\cot\left(\frac{4\pi}{5}\right) \] This becomes: \[ (\sqrt{5} - 2) + 2\left(\frac{1}{2}\right) + 4(-(\sqrt{5} - 2)) \] Calculating each term: \[ = (\sqrt{5} - 2) + 1 - 4(\sqrt{5} - 2) \] \[ = \sqrt{5} - 2 + 1 - 4\sqrt{5} + 8 \] Combining like terms: \[ = (\sqrt{5} - 4\sqrt{5}) + (-2 + 1 + 8) \] \[ = -3\sqrt{5} + 7 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{7 - 3\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 10|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 11|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(tan((3pi)/4))

Find the value of tan^(-1)(tan((3pi)/4))

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3)+8tan((8pi)/3) is equal to (A) -5sqrt(3) (B) -5/(sqrt3) (C) 5sqrt(3) (D) 5/(sqrt3)

Prove that tan(pi/16)+2tan(pi/8)+4=cot (pi/16) .

Prove that tan(pi/16)+2tan(pi/8)+4=cot(pi/6) .

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

The value of tan((5pi)/12)-tan(pi/12) is

Find the value of : cot^(-1)cot((5pi)/4)

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Find the value of: 3sin(pi/6) sec(pi/3) 4sin((5pi)/6) cot(pi/4)