Home
Class 12
MATHS
Let f(n)(theta)= 2 sin . (theta)/(2) sin...

Let `f_(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)/(2) sin. (5theta)/(2) + 2sin. (theta)/(2) sin. (7 theta)/(2) + ... + 2 sin (2 n+1) (theta)/(2), n in N`,
then which of the following is/are correct ?

A

`f_(9)(pi/4)=(1)/(sqrt(2))`

B

`f_(n)((2pi)/(n))=0, n in N`

C

`f_(3)((2pi)/(7))=0`

D

`f_(9)(pi/4)=-(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f_n(\theta) \) given by: \[ f_n(\theta) = 2 \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right) + 2 \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{5\theta}{2}\right) + 2 \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{7\theta}{2}\right) + \ldots + 2 \sin\left(\frac{(2n+1)\theta}{2}\right) \] ### Step 1: Factor out common terms We can factor out \( 2 \sin\left(\frac{\theta}{2}\right) \) from the entire expression: \[ f_n(\theta) = 2 \sin\left(\frac{\theta}{2}\right) \left( \sin\left(\frac{3\theta}{2}\right) + \sin\left(\frac{5\theta}{2}\right) + \sin\left(\frac{7\theta}{2}\right) + \ldots + \sin\left(\frac{(2n+1)\theta}{2}\right) \right) \] ### Step 2: Sum of sine terms The sum inside the parentheses can be expressed as: \[ S = \sin\left(\frac{3\theta}{2}\right) + \sin\left(\frac{5\theta}{2}\right) + \sin\left(\frac{7\theta}{2}\right) + \ldots + \sin\left(\frac{(2n+1)\theta}{2}\right) \] This is an arithmetic series of sine functions. The general formula for the sum of sine functions can be used here: \[ S = \frac{\sin\left(\frac{n \cdot d}{2}\right) \cdot \sin\left(\frac{a + l}{2}\right)}{\sin\left(\frac{d}{2}\right)} \] where \( a \) is the first term, \( l \) is the last term, \( n \) is the number of terms, and \( d \) is the common difference. ### Step 3: Apply the formula In our case: - \( a = \frac{3\theta}{2} \) - \( l = \frac{(2n+1)\theta}{2} \) - \( d = \theta \) - Number of terms \( n = n \) Thus, we can write: \[ S = \frac{\sin\left(\frac{n \cdot \theta}{2}\right) \cdot \sin\left(\frac{\frac{3\theta}{2} + \frac{(2n+1)\theta}{2}}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] ### Step 4: Simplify the expression Now, simplifying the sine terms: \[ \frac{3\theta}{2} + \frac{(2n+1)\theta}{2} = \frac{(2n + 4)\theta}{2} \] Thus: \[ S = \frac{\sin\left(\frac{n \cdot \theta}{2}\right) \cdot \sin\left(\frac{(n + 2)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] ### Step 5: Substitute back into \( f_n(\theta) \) Now substituting \( S \) back into \( f_n(\theta) \): \[ f_n(\theta) = 2 \sin\left(\frac{\theta}{2}\right) \cdot \frac{\sin\left(\frac{n \cdot \theta}{2}\right) \cdot \sin\left(\frac{(n + 2)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] This simplifies to: \[ f_n(\theta) = 2 \sin\left(\frac{n \cdot \theta}{2}\right) \cdot \sin\left(\frac{(n + 2)\theta}{2}\right) \] ### Step 6: Evaluate specific cases To find the values of \( f_n(\theta) \) for specific angles, we can substitute \( \theta \) with \( \frac{2\pi}{n} \) and other values as needed. ### Conclusion After evaluating the function for specific angles, we can determine which options are correct based on the results obtained.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

Prove that : (sin theta + 2 sin 3theta + sin 5theta)/(sin 3theta + 2 sin 5theta + sin 7theta) = (sin 3theta)/(sin 5theta)

Prove that (2 sin theta - sin 2theta)/(2 sin theta + sin 2theta) = tan^2\ theta/2

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Let f_n(theta)=(cos theta/2+cos 2theta + cos (7theta)/2+...+cos (3n-2) (theta/2))/(sin theta/2+sin 2theta + sin (7theta)/2+....+ sin (3n-2)(theta/2)) then f_3((3pi)/16)

sin2theta+(1)/(3)sin^(3)2theta+(1)/(5)sin^(5)2theta+....=

sin^(3)theta + sin theta - sin theta cos^(2)theta =

cos2 theta*cos(theta/(2))-cos3 theta*cos((9theta)/2)=sin5 theta*sin((5theta)/(2))

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (More Than One Correct Option Type Questions)
  1. Suppose cos x = 0 and cos(x+z)=1/2. Then, the possible value (s) of z ...

    Text Solution

    |

  2. Let f(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)...

    Text Solution

    |

  3. Let P=sin 25^(@) sin 35^(@)sin 60^(@) sin 85^(@) and Q=sin20^(@)sin40...

    Text Solution

    |

  4. For 0ltphilt(pi)/(2)" if " x=sum(n=0)^(oo)cos^(2n) phi,y=sum(n=0)^(oo)...

    Text Solution

    |

  5. Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos ...

    Text Solution

    |

  6. It is known that sinbeta=4/5 and 0 < beta < pi then the value of (sqrt...

    Text Solution

    |

  7. In cyclic quadrilateral ABCD, if cot A=3/4 and tan B= (-12)/(5), then ...

    Text Solution

    |

  8. If the equation 2cos^(2)x+cosx-a=0 has solutions, then a can be

    Text Solution

    |

  9. If A=sin 44^(@)+cos44^(@), B=sin45^(@)+ cos45^(@) and C= sin46^(@)+cos...

    Text Solution

    |

  10. If tan(2alpha+beta)=x & tan(alpha+2beta)=y, then [ tan3(alpha+beta)]. ...

    Text Solution

    |

  11. If x=secphi -tanphi and y="cosec" phi+cotphi, then show that xy+x-y+1...

    Text Solution

    |

  12. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  13. If 3sinbeta=sin(2alpha+beta) then

    Text Solution

    |

  14. Let P(n)(u) be a polynomial is u of degree n. Then, for every positive...

    Text Solution

    |

  15. If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha), then:

    Text Solution

    |

  16. If cos 5 theta = a cos^(5)theta + b cos^(3)theta+c cos theta. Then, fi...

    Text Solution

    |

  17. x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha...

    Text Solution

    |

  18. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  19. Let p(k)=(1+cos((pi)/(4k)))(1+cos((2k-1)pi)/(4k)) (1+cos""((2k+1)pi)...

    Text Solution

    |

  20. if x = a cos^3 theta sin^2 theta and y = a cos^2 theta sin^3 theta an...

    Text Solution

    |