Home
Class 12
MATHS
It is known that sinbeta=4/5 and 0 < bet...

It is known that `sinbeta=4/5` and `0 < beta < pi` then the value of `(sqrt3 sin(alpha+beta)-2/cos(pi/6) cos(alpha+beta))/(sin alpha)` is

A

(a)independent of `alpha` for all `beta` in `(0 , pi)`

B

(b)`(5)/(sqrt(3))` for `tan beta gt 1`

C

(c)`(sqrt(3)(7+24 cot alpha))/(15)` for `tan beta lt 0`

D

(d)zero for `tan beta gt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given information and use trigonometric identities to simplify the expression. ### Given: - \( \sin \beta = \frac{4}{5} \) - \( 0 < \beta < \pi \) ### Step 1: Find \( \cos \beta \) Using the Pythagorean identity: \[ \sin^2 \beta + \cos^2 \beta = 1 \] Substituting the value of \( \sin \beta \): \[ \left(\frac{4}{5}\right)^2 + \cos^2 \beta = 1 \] \[ \frac{16}{25} + \cos^2 \beta = 1 \] \[ \cos^2 \beta = 1 - \frac{16}{25} = \frac{9}{25} \] \[ \cos \beta = \pm \frac{3}{5} \] Since \( 0 < \beta < \pi \), \( \cos \beta \) can be negative in the second quadrant. Therefore: \[ \cos \beta = -\frac{3}{5} \] ### Step 2: Rewrite the expression We need to evaluate: \[ \frac{\sqrt{3} \sin(\alpha + \beta) - 2 \cos\left(\frac{\pi}{6}\right) \cos(\alpha + \beta)}{\sin \alpha} \] ### Step 3: Find \( \cos\left(\frac{\pi}{6}\right) \) Using the known value: \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute into the expression Now substituting this value into the expression: \[ \frac{\sqrt{3} \sin(\alpha + \beta) - 2 \cdot \frac{\sqrt{3}}{2} \cos(\alpha + \beta)}{\sin \alpha} \] This simplifies to: \[ \frac{\sqrt{3} \sin(\alpha + \beta) - \sqrt{3} \cos(\alpha + \beta)}{\sin \alpha} \] ### Step 5: Factor out \( \sqrt{3} \) Factoring out \( \sqrt{3} \): \[ \frac{\sqrt{3} \left( \sin(\alpha + \beta) - \cos(\alpha + \beta) \right)}{\sin \alpha} \] ### Step 6: Use the angle addition formula Using the angle addition formula: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \] \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] Substituting these into the expression gives: \[ \sin(\alpha + \beta) - \cos(\alpha + \beta) = \left( \sin \alpha \cdot -\frac{3}{5} + \cos \alpha \cdot \frac{4}{5} \right) - \left( \cos \alpha \cdot -\frac{3}{5} - \sin \alpha \cdot \frac{4}{5} \right) \] ### Step 7: Simplify the expression Combining the terms: \[ = \left( -\frac{3}{5} \sin \alpha + \frac{4}{5} \cos \alpha + \frac{3}{5} \cos \alpha + \frac{4}{5} \sin \alpha \right) \] \[ = \left( \frac{1}{5} \sin \alpha + \frac{7}{5} \cos \alpha \right) \] ### Step 8: Final expression Now substituting this back into our expression: \[ \frac{\sqrt{3} \left( \frac{1}{5} \sin \alpha + \frac{7}{5} \cos \alpha \right)}{\sin \alpha} \] This simplifies to: \[ = \frac{\sqrt{3}}{5} + \frac{7\sqrt{3} \cos \alpha}{5 \sin \alpha} \] ### Conclusion The final value of the expression is: \[ \frac{\sqrt{3}}{5} + \frac{7\sqrt{3} \cos \alpha}{5 \sin \alpha} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 1.46. No. of accident (x), 0, 1 , 2 , 3, 4, 5 , Total Frequency is 200 and no. of days (f): 46 , ? , ? , 25 , 10 , 5

Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 1.46. No. of accident (x) 0 1 2 3 4 5 Total Frequency (f): 46 ? ? 25 10 5 200

Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 1.46. No of accident (x) 0 1 2 3 4 5 Total Frequency (f): 46 ? ? 25 10 5 200

sin alpha+ sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of tan (alpha+beta) is

If sinalpha=1/sqrt5 and sinbeta=3/5 , then beta-alpha lies in

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

The position of both an electron and a helium atom is known within 1.0 nm and the momentum of the electron is known within 5.0 xx 10^-26 kg ms^-1 . The minimum uncertainty in the measurement of the momentum of the helium atom is.

If alpha,beta in (-pi/2,0) such that (sin alpha+sinbeta)+(sinalpha)/(sinbeta)=0 and (sinalpha+sinbeta) (sinalpha)/(sinbeta)=-1 and lambda=lim_(n->oo) (1+(2sinalpha)^(2n))/((2sinbeta)^(2n)) then :

CaS 0_4 is also known as

If sinalpha,sinbeta and cosalpha are in G.P then roots of x^2+2xcotbeta+1=0 are always

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (More Than One Correct Option Type Questions)
  1. Suppose cos x = 0 and cos(x+z)=1/2. Then, the possible value (s) of z ...

    Text Solution

    |

  2. Let f(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)...

    Text Solution

    |

  3. Let P=sin 25^(@) sin 35^(@)sin 60^(@) sin 85^(@) and Q=sin20^(@)sin40...

    Text Solution

    |

  4. For 0ltphilt(pi)/(2)" if " x=sum(n=0)^(oo)cos^(2n) phi,y=sum(n=0)^(oo)...

    Text Solution

    |

  5. Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos ...

    Text Solution

    |

  6. It is known that sinbeta=4/5 and 0 < beta < pi then the value of (sqrt...

    Text Solution

    |

  7. In cyclic quadrilateral ABCD, if cot A=3/4 and tan B= (-12)/(5), then ...

    Text Solution

    |

  8. If the equation 2cos^(2)x+cosx-a=0 has solutions, then a can be

    Text Solution

    |

  9. If A=sin 44^(@)+cos44^(@), B=sin45^(@)+ cos45^(@) and C= sin46^(@)+cos...

    Text Solution

    |

  10. If tan(2alpha+beta)=x & tan(alpha+2beta)=y, then [ tan3(alpha+beta)]. ...

    Text Solution

    |

  11. If x=secphi -tanphi and y="cosec" phi+cotphi, then show that xy+x-y+1...

    Text Solution

    |

  12. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  13. If 3sinbeta=sin(2alpha+beta) then

    Text Solution

    |

  14. Let P(n)(u) be a polynomial is u of degree n. Then, for every positive...

    Text Solution

    |

  15. If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha), then:

    Text Solution

    |

  16. If cos 5 theta = a cos^(5)theta + b cos^(3)theta+c cos theta. Then, fi...

    Text Solution

    |

  17. x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha...

    Text Solution

    |

  18. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  19. Let p(k)=(1+cos((pi)/(4k)))(1+cos((2k-1)pi)/(4k)) (1+cos""((2k+1)pi)...

    Text Solution

    |

  20. if x = a cos^3 theta sin^2 theta and y = a cos^2 theta sin^3 theta an...

    Text Solution

    |