Home
Class 12
MATHS
if x = a cos^3 theta sin^2 theta and y ...

if ` x = a cos^3 theta sin^2 theta and y = a cos^2 theta sin^3 theta` and `(x^2 + y^2)^p/(xy)^q` is independent of `theta`, then (A) `4p=5q` (B) `5p=4q` (C) `p+q=9` (D) `pq=20`

A

4P=5Q

B

5P=4Q

C

`P+Q=9

D

PQ=20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expressions for \( x \) and \( y \): \[ x = a \cos^3 \theta \sin^2 \theta \] \[ y = a \cos^2 \theta \sin^3 \theta \] ### Step 1: Calculate \( x^2 + y^2 \) First, we calculate \( x^2 \) and \( y^2 \): \[ x^2 = (a \cos^3 \theta \sin^2 \theta)^2 = a^2 \cos^6 \theta \sin^4 \theta \] \[ y^2 = (a \cos^2 \theta \sin^3 \theta)^2 = a^2 \cos^4 \theta \sin^6 \theta \] Now, we can add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = a^2 \cos^6 \theta \sin^4 \theta + a^2 \cos^4 \theta \sin^6 \theta \] Factoring out \( a^2 \cos^4 \theta \sin^4 \theta \): \[ x^2 + y^2 = a^2 \cos^4 \theta \sin^4 \theta \left( \cos^2 \theta + \sin^2 \theta \right) \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ x^2 + y^2 = a^2 \cos^4 \theta \sin^4 \theta \] ### Step 2: Calculate \( xy \) Next, we calculate \( xy \): \[ xy = (a \cos^3 \theta \sin^2 \theta)(a \cos^2 \theta \sin^3 \theta) = a^2 \cos^5 \theta \sin^5 \theta \] ### Step 3: Substitute into the expression We need to evaluate the expression: \[ \frac{(x^2 + y^2)^p}{(xy)^q} \] Substituting the values we found: \[ \frac{(a^2 \cos^4 \theta \sin^4 \theta)^p}{(a^2 \cos^5 \theta \sin^5 \theta)^q} \] This simplifies to: \[ \frac{a^{2p} \cos^{4p} \theta \sin^{4p} \theta}{a^{2q} \cos^{5q} \theta \sin^{5q} \theta} \] ### Step 4: Combine the terms This can be rewritten as: \[ a^{2(p - q)} \cos^{4p - 5q} \theta \sin^{4p - 5q} \theta \] ### Step 5: Set the expression independent of \( \theta \) For the expression to be independent of \( \theta \), both the powers of \( \cos \theta \) and \( \sin \theta \) must be zero: 1. \( 4p - 5q = 0 \) 2. \( 4p - 5q = 0 \) This gives us: \[ 4p = 5q \] ### Conclusion Thus, the condition for the expression to be independent of \( \theta \) is: \[ \boxed{4p = 5q} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|52 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

Solve : cos p theta = sin q theta.

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (More Than One Correct Option Type Questions)
  1. Suppose cos x = 0 and cos(x+z)=1/2. Then, the possible value (s) of z ...

    Text Solution

    |

  2. Let f(n)(theta)= 2 sin . (theta)/(2) sin. (3theta)/(2) + 2 sin.(theta)...

    Text Solution

    |

  3. Let P=sin 25^(@) sin 35^(@)sin 60^(@) sin 85^(@) and Q=sin20^(@)sin40...

    Text Solution

    |

  4. For 0ltphilt(pi)/(2)" if " x=sum(n=0)^(oo)cos^(2n) phi,y=sum(n=0)^(oo)...

    Text Solution

    |

  5. Let P(x)=cot^(2)x ((1+tanx+tan^(2)x)/(1+cot x+ cot^(2)x))+((cos x-cos ...

    Text Solution

    |

  6. It is known that sinbeta=4/5 and 0 < beta < pi then the value of (sqrt...

    Text Solution

    |

  7. In cyclic quadrilateral ABCD, if cot A=3/4 and tan B= (-12)/(5), then ...

    Text Solution

    |

  8. If the equation 2cos^(2)x+cosx-a=0 has solutions, then a can be

    Text Solution

    |

  9. If A=sin 44^(@)+cos44^(@), B=sin45^(@)+ cos45^(@) and C= sin46^(@)+cos...

    Text Solution

    |

  10. If tan(2alpha+beta)=x & tan(alpha+2beta)=y, then [ tan3(alpha+beta)]. ...

    Text Solution

    |

  11. If x=secphi -tanphi and y="cosec" phi+cotphi, then show that xy+x-y+1...

    Text Solution

    |

  12. If tan(x/2)=cosec x-sin x, then find the value of tan^(2) (x/2).

    Text Solution

    |

  13. If 3sinbeta=sin(2alpha+beta) then

    Text Solution

    |

  14. Let P(n)(u) be a polynomial is u of degree n. Then, for every positive...

    Text Solution

    |

  15. If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha), then:

    Text Solution

    |

  16. If cos 5 theta = a cos^(5)theta + b cos^(3)theta+c cos theta. Then, fi...

    Text Solution

    |

  17. x=sqrt(a^(2)cos^(2)alpha+b^(2)sin^(2)alpha)+sqrt(alpha^(2)sin^(2)alpha...

    Text Solution

    |

  18. Prove that ((cos A+cos B)/(sinA-sinB))^(n)+((sinA+sinB)/(cos A-cosB))^...

    Text Solution

    |

  19. Let p(k)=(1+cos((pi)/(4k)))(1+cos((2k-1)pi)/(4k)) (1+cos""((2k+1)pi)...

    Text Solution

    |

  20. if x = a cos^3 theta sin^2 theta and y = a cos^2 theta sin^3 theta an...

    Text Solution

    |