Home
Class 12
MATHS
If (sinalpha)/(sinbeta)=(cosgamma)/(cosd...

If `(sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/2)*cos((alpha+beta)/2)*cosdelta)/(sin((delta-gamma)/2)*sin((delta+gamma)/2)*sinbeta)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression \[ \frac{\sin\left(\frac{\alpha - \beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) \cos \delta}{\sin\left(\frac{\delta - \gamma}{2}\right) \sin\left(\frac{\delta + \gamma}{2}\right) \sin \beta} \] given that \[ \frac{\sin \alpha}{\sin \beta} = \frac{\cos \gamma}{\cos \delta}. \] ### Step 1: Use the identities for sine and cosine We will use the following identities: 1. \(\sin A \cos B = \frac{1}{2} \left(\sin(A + B) + \sin(A - B)\right)\) 2. \(\sin A \sin B = \frac{1}{2} \left(\cos(A - B) - \cos(A + B)\right)\) ### Step 2: Expand the numerator Using the first identity on the numerator: \[ \sin\left(\frac{\alpha - \beta}{2}\right) \cos\left(\frac{\alpha + \beta}{2}\right) = \frac{1}{2} \left(\sin\left(\frac{\alpha - \beta}{2} + \frac{\alpha + \beta}{2}\right) + \sin\left(\frac{\alpha - \beta}{2} - \frac{\alpha + \beta}{2}\right)\right) \] This simplifies to: \[ \frac{1}{2} \left(\sin \alpha + \sin(-\beta)\right) = \frac{1}{2} \left(\sin \alpha - \sin \beta\right) \] So, the numerator becomes: \[ \frac{1}{2} \left(\sin \alpha - \sin \beta\right) \cos \delta \] ### Step 3: Expand the denominator Using the second identity on the denominator: \[ \sin\left(\frac{\delta - \gamma}{2}\right) \sin\left(\frac{\delta + \gamma}{2}\right) = \frac{1}{2} \left(\cos\left(\frac{\delta - \gamma}{2} - \frac{\delta + \gamma}{2}\right) - \cos\left(\frac{\delta - \gamma}{2} + \frac{\delta + \gamma}{2}\right)\right) \] This simplifies to: \[ \frac{1}{2} \left(\cos(-\gamma) - \cos \delta\right) = \frac{1}{2} \left(\cos \gamma - \cos \delta\right) \] Thus, the denominator becomes: \[ \frac{1}{2} \left(\cos \gamma - \cos \delta\right) \sin \beta \] ### Step 4: Substitute into the expression Now substituting the expanded numerator and denominator into the original expression, we have: \[ \frac{\frac{1}{2} \left(\sin \alpha - \sin \beta\right) \cos \delta}{\frac{1}{2} \left(\cos \gamma - \cos \delta\right) \sin \beta} \] The \(\frac{1}{2}\) cancels out: \[ \frac{\left(\sin \alpha - \sin \beta\right) \cos \delta}{\left(\cos \gamma - \cos \delta\right) \sin \beta} \] ### Step 5: Use the given condition From the given condition \(\frac{\sin \alpha}{\sin \beta} = \frac{\cos \gamma}{\cos \delta}\), we can express \(\sin \alpha \cos \delta\) in terms of \(\sin \beta \cos \gamma\): \[ \sin \alpha \cos \delta = \sin \beta \cos \gamma \] Substituting this into our expression gives: \[ \frac{\sin \beta \cos \gamma - \sin \beta \cos \delta}{\left(\cos \gamma - \cos \delta\right) \sin \beta} \] ### Step 6: Simplify the expression Factoring out \(\sin \beta\) from the numerator: \[ \frac{\sin \beta (\cos \gamma - \cos \delta)}{(\cos \gamma - \cos \delta) \sin \beta} \] The \(\sin \beta\) cancels out, and we are left with: \[ 1 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha) *sin(beta-delta) , then :

If sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta) =

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

sinalpha+sinbeta=a ,cosalpha+cosbeta=b=>sin(alpha+beta)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. In a DeltaA B C ,1/(1+tan^2(A/2))+1/(1+tan^2(B/2))+1/(1+tan^2(C/2))=k ...

    Text Solution

    |

  2. If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/...

    Text Solution

    |

  3. Find the exact value of the expression tan(pi/20)-tan((3pi)/20)+tan((5...

    Text Solution

    |

  4. Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1)^(44) sin n^(@)) , find the g...

    Text Solution

    |

  5. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  6. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  7. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  8. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  9. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  10. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  11. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  12. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  13. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  14. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  15. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  16. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  17. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  18. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  19. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  20. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |