Home
Class 12
MATHS
Find the exact value of the expression t...

Find the exact value of the expression `tan(pi/20)-tan((3pi)/20)+tan((5pi)/20)-tan((7pi)/20)+tan((9pi)/20).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the exact value of the expression \[ E = \tan\left(\frac{\pi}{20}\right) - \tan\left(\frac{3\pi}{20}\right) + \tan\left(\frac{5\pi}{20}\right) - \tan\left(\frac{7\pi}{20}\right) + \tan\left(\frac{9\pi}{20}\right), \] we will follow these steps: ### Step 1: Convert radians to degrees We know that \(\pi\) radians is equivalent to \(180^\circ\). Therefore, we can convert each term: \[ E = \tan\left(9^\circ\right) - \tan\left(27^\circ\right) + \tan\left(45^\circ\right) - \tan\left(63^\circ\right) + \tan\left(81^\circ\right). \] ### Step 2: Use the identity \(\tan(90^\circ - x) = \cot(x)\) We can simplify \(\tan(63^\circ)\) and \(\tan(81^\circ)\): \[ \tan(63^\circ) = \cot(27^\circ) \quad \text{and} \quad \tan(81^\circ) = \cot(9^\circ). \] Thus, we can rewrite \(E\): \[ E = \tan(9^\circ) - \tan(27^\circ) + \tan(45^\circ) - \cot(27^\circ) + \cot(9^\circ). \] ### Step 3: Substitute \(\tan(45^\circ)\) Since \(\tan(45^\circ) = 1\), we can substitute this value into our expression: \[ E = \tan(9^\circ) - \tan(27^\circ) + 1 - \cot(27^\circ) + \cot(9^\circ). \] ### Step 4: Combine terms Now, we can group the terms involving \(\tan\) and \(\cot\): \[ E = \left(\tan(9^\circ) + \cot(9^\circ)\right) - \left(\tan(27^\circ) + \cot(27^\circ)\right) + 1. \] ### Step 5: Use the identity \(\tan(x) + \cot(x) = \frac{\sin^2(x) + \cos^2(x)}{\sin(x)\cos(x)} = \frac{1}{\sin(x)\cos(x)}\) This means: \[ \tan(x) + \cot(x) = \frac{1}{\sin(x)\cos(x)} = \frac{2}{\sin(2x)}. \] Thus, we have: \[ E = \frac{2}{\sin(18^\circ)} - \frac{2}{\sin(54^\circ)} + 1. \] ### Step 6: Use known values of \(\sin(18^\circ)\) and \(\sin(54^\circ)\) We know: \[ \sin(18^\circ) = \frac{\sqrt{5}-1}{4} \quad \text{and} \quad \sin(54^\circ) = \frac{\sqrt{5}+1}{4}. \] Substituting these values gives: \[ E = \frac{2}{\frac{\sqrt{5}-1}{4}} - \frac{2}{\frac{\sqrt{5}+1}{4}} + 1. \] ### Step 7: Simplify the expression This simplifies to: \[ E = \frac{8}{\sqrt{5}-1} - \frac{8}{\sqrt{5}+1} + 1. \] Finding a common denominator: \[ E = \frac{8(\sqrt{5}+1) - 8(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)} + 1. \] This results in: \[ E = \frac{8\sqrt{5} + 8 - 8\sqrt{5} + 8}{4} + 1 = \frac{16}{4} + 1 = 4 + 1 = 5. \] ### Final Answer Thus, the exact value of the expression is \[ \boxed{5}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Find the value of tan pi/8 .

The absolute value of the expression tan(pi/(16))+tan((5pi)/(16))+tan((9pi)/(16))+tan((13pi)/(16)) is ______

The value of tan((5pi)/12)-tan(pi/12) is

Find the value of the following: tan^(-1)(tan((7pi)/6))

8. Find the principal value of tan^-1( tan (9pi)/8)

Find the value of tan (13pi)/(12) .

Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

The value of the expression tan. (pi)/(7)+ 2 tan. (2pi)/(7)+ 4 tan . (4pi)/(7)+ 8 cot. (8pi)/(7) is equal to

Find the value of tan^(-1)(tan((3pi)/4))

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. In a DeltaA B C ,1/(1+tan^2(A/2))+1/(1+tan^2(B/2))+1/(1+tan^2(C/2))=k ...

    Text Solution

    |

  2. If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/...

    Text Solution

    |

  3. Find the exact value of the expression tan(pi/20)-tan((3pi)/20)+tan((5...

    Text Solution

    |

  4. Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1)^(44) sin n^(@)) , find the g...

    Text Solution

    |

  5. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  6. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  7. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  8. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  9. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  10. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  11. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  12. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  13. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  14. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  15. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  16. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  17. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  18. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  19. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  20. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |