Home
Class 12
MATHS
Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1...

Let `x=(sum_(n=1)^(44) cos n^(@))/(sum_(n=1)^(44) sin n^(@))` , find the greatest integer that does not exceed.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \[ x = \frac{\sum_{n=1}^{44} \cos n^\circ}{\sum_{n=1}^{44} \sin n^\circ} \] ### Step 1: Identify the sums We can express the sums of cosines and sines as follows: \[ \sum_{n=1}^{44} \cos n^\circ \quad \text{and} \quad \sum_{n=1}^{44} \sin n^\circ \] ### Step 2: Use the formula for the sum of cosines The sum of cosines can be calculated using the formula: \[ \sum_{n=1}^{N} \cos n\theta = \frac{\sin\left(\frac{N\theta}{2}\right) \cos\left(\frac{(N+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] For our case, \(N = 44\) and \(\theta = 1^\circ\): \[ \sum_{n=1}^{44} \cos n^\circ = \frac{\sin\left(\frac{44 \cdot 1^\circ}{2}\right) \cos\left(\frac{(44+1) \cdot 1^\circ}{2}\right)}{\sin\left(\frac{1^\circ}{2}\right)} \] ### Step 3: Calculate the sum of sines Similarly, the sum of sines can be calculated using the formula: \[ \sum_{n=1}^{N} \sin n\theta = \frac{\sin\left(\frac{N\theta}{2}\right) \sin\left(\frac{(N+1)\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] For our case: \[ \sum_{n=1}^{44} \sin n^\circ = \frac{\sin\left(\frac{44 \cdot 1^\circ}{2}\right) \sin\left(\frac{(44+1) \cdot 1^\circ}{2}\right)}{\sin\left(\frac{1^\circ}{2}\right)} \] ### Step 4: Substitute the sums into x Now substituting the sums into the expression for \(x\): \[ x = \frac{\frac{\sin(22^\circ) \cos(22.5^\circ)}{\sin(0.5^\circ)}}{\frac{\sin(22^\circ) \sin(22.5^\circ)}{\sin(0.5^\circ)}} \] ### Step 5: Simplify the expression The \(\sin(0.5^\circ)\) cancels out: \[ x = \frac{\cos(22.5^\circ)}{\sin(22.5^\circ)} = \cot(22.5^\circ) \] ### Step 6: Calculate \(\cot(22.5^\circ)\) Using the identity: \[ \cot(2a) = \frac{\cot^2(a) - 1}{2 \cot(a)} \] Let \(a = 22.5^\circ\), then \(2a = 45^\circ\) and \(\cot(45^\circ) = 1\): \[ 1 = \frac{\cot^2(22.5^\circ) - 1}{2 \cot(22.5^\circ)} \] Let \(y = \cot(22.5^\circ)\): \[ 1 = \frac{y^2 - 1}{2y} \] Multiplying through by \(2y\): \[ 2y = y^2 - 1 \] Rearranging gives: \[ y^2 - 2y - 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ y = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \] Since \(\cot(22.5^\circ)\) is positive, we take: \[ \cot(22.5^\circ) = 1 + \sqrt{2} \] ### Step 8: Find the greatest integer that does not exceed \(x\) Calculating \(1 + \sqrt{2}\): \[ \sqrt{2} \approx 1.414 \implies 1 + \sqrt{2} \approx 2.414 \] Thus, the greatest integer that does not exceed \(x\) is: \[ \lfloor 2.414 \rfloor = 2 \] ### Final Answer The greatest integer that does not exceed \(x\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

Evaluate sum_(r=1)^(n-1) cos^(2) ((rpi)/(n)) .

Find sum_(i=1)^n sum_(i=1)^n sum_(k=1)^n (ijk)

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Evaluate sum_(n=1)^(13)(i^n+i^(n+1)), where n in Ndot

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/...

    Text Solution

    |

  2. Find the exact value of the expression tan(pi/20)-tan((3pi)/20)+tan((5...

    Text Solution

    |

  3. Let x=(sum(n=1)^(44) cos n^(@))/(sum(n=1)^(44) sin n^(@)) , find the g...

    Text Solution

    |

  4. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  5. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  6. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  7. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  8. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  9. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  10. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  11. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  12. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  13. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  14. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  15. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  16. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  17. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  18. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  19. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  20. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |