Home
Class 12
MATHS
If cos 5 alpha=cos^5 alpha, where alpha ...

If `cos 5 alpha=cos^5 alpha,` where `alpha in (0,pi/2)` then find the possible values of `(sec^2 alpha+cosec^2 alpha+cot^2 alpha).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 5\alpha = \cos^5 \alpha \) for \( \alpha \in (0, \frac{\pi}{2}) \) and find the possible values of \( \sec^2 \alpha + \csc^2 \alpha + \cot^2 \alpha \), we can follow these steps: ### Step 1: Rewrite the equation using the cosine multiple angle formula We know that: \[ \cos 5\alpha = 16 \cos^5 \alpha - 20 \cos^3 \alpha + 5 \cos \alpha \] So we can rewrite the equation as: \[ 16 \cos^5 \alpha - 20 \cos^3 \alpha + 5 \cos \alpha = \cos^5 \alpha \] ### Step 2: Rearrange the equation Bringing all terms to one side gives us: \[ 16 \cos^5 \alpha - \cos^5 \alpha - 20 \cos^3 \alpha + 5 \cos \alpha = 0 \] This simplifies to: \[ 15 \cos^5 \alpha - 20 \cos^3 \alpha + 5 \cos \alpha = 0 \] ### Step 3: Factor out the common term Factoring out \( 5 \cos \alpha \): \[ 5 \cos \alpha (3 \cos^4 \alpha - 4 \cos^2 \alpha + 1) = 0 \] This gives us two cases: 1. \( 5 \cos \alpha = 0 \) 2. \( 3 \cos^4 \alpha - 4 \cos^2 \alpha + 1 = 0 \) ### Step 4: Analyze the first case From \( 5 \cos \alpha = 0 \), we find: \[ \cos \alpha = 0 \] However, since \( \alpha \in (0, \frac{\pi}{2}) \), this case does not provide a valid solution. ### Step 5: Solve the second case Let \( t = \cos^2 \alpha \). Then we rewrite the equation: \[ 3t^2 - 4t + 1 = 0 \] Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3} \] \[ = \frac{4 \pm \sqrt{16 - 12}}{6} = \frac{4 \pm 2}{6} \] This results in: \[ t = \frac{6}{6} = 1 \quad \text{or} \quad t = \frac{2}{6} = \frac{1}{3} \] ### Step 6: Find \( \cos^2 \alpha \) and \( \sin^2 \alpha \) 1. If \( \cos^2 \alpha = 1 \): - Then \( \sin^2 \alpha = 0 \). 2. If \( \cos^2 \alpha = \frac{1}{3} \): - Then \( \sin^2 \alpha = 1 - \frac{1}{3} = \frac{2}{3} \). ### Step 7: Calculate \( \sec^2 \alpha + \csc^2 \alpha + \cot^2 \alpha \) Using the identities: - \( \sec^2 \alpha = \frac{1}{\cos^2 \alpha} \) - \( \csc^2 \alpha = \frac{1}{\sin^2 \alpha} \) - \( \cot^2 \alpha = \frac{\cos^2 \alpha}{\sin^2 \alpha} \) **Case 1: \( \cos^2 \alpha = 1 \)** - \( \sec^2 \alpha = 1 \) - \( \csc^2 \alpha \) is undefined (since \( \sin^2 \alpha = 0 \)). **Case 2: \( \cos^2 \alpha = \frac{1}{3} \)** - \( \sec^2 \alpha = \frac{1}{\frac{1}{3}} = 3 \) - \( \csc^2 \alpha = \frac{1}{\frac{2}{3}} = \frac{3}{2} \) - \( \cot^2 \alpha = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{2} \) Now, summing these: \[ \sec^2 \alpha + \csc^2 \alpha + \cot^2 \alpha = 3 + \frac{3}{2} + \frac{1}{2} = 3 + 2 = 5 \] ### Final Answer The possible value of \( \sec^2 \alpha + \csc^2 \alpha + \cot^2 \alpha \) is \( \boxed{5} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin alpha=-3/6, alpha in [0,2pi] then the possible values of cos (alpha/2) , is/are

Which is equivalent to (sin^2 alpha + cos^2 alpha )/(cos alpha ) ?

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

Show that 1 + cot^2 alpha / (1+ cosec alpha) = cosec alpha

If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 alpha+8sec^6 alpha.

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

If alpha is nonreal and alpha= (1)^(1/5) then the find the value of 2^(|1+alpha+alpha^2+alpha^-2-alpha^-1|)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  2. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  3. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  4. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  5. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  6. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  7. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  8. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  9. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  10. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  11. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  12. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  13. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  14. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  15. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  16. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  17. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |

  18. If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4...

    Text Solution

    |

  19. 16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8))(c...

    Text Solution

    |

  20. If (1)/(sin20^(@)) + (1)/(sqrt(3)cos20^(@)) = 2kcos40^(@), then 18k^(4...

    Text Solution

    |