Home
Class 12
MATHS
tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan...

`tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7pi)/16 )'=35

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^2 \left( \frac{\pi}{16} \right) + \tan^2 \left( \frac{2\pi}{16} \right) + \tan^2 \left( \frac{3\pi}{16} \right) + \tan^2 \left( \frac{4\pi}{16} \right) + \tan^2 \left( \frac{5\pi}{16} \right) + \tan^2 \left( \frac{6\pi}{16} \right) + \tan^2 \left( \frac{7\pi}{16} \right) = 35 \), we can follow these steps: ### Step 1: Rewrite the angles We can express \( \tan^2 \left( \frac{5\pi}{16} \right) \), \( \tan^2 \left( \frac{6\pi}{16} \right) \), and \( \tan^2 \left( \frac{7\pi}{16} \right) \) in terms of cotangent: - \( \tan \left( \frac{5\pi}{16} \right) = \cot \left( \frac{3\pi}{16} \right) \) - \( \tan \left( \frac{6\pi}{16} \right) = \cot \left( \frac{2\pi}{16} \right) \) - \( \tan \left( \frac{7\pi}{16} \right) = \cot \left( \frac{\pi}{16} \right) \) Thus, we can rewrite the sum as: \[ \tan^2 \left( \frac{\pi}{16} \right) + \tan^2 \left( \frac{2\pi}{16} \right) + \tan^2 \left( \frac{3\pi}{16} \right) + \tan^2 \left( \frac{4\pi}{16} \right) + \cot^2 \left( \frac{3\pi}{16} \right) + \cot^2 \left( \frac{2\pi}{16} \right) + \cot^2 \left( \frac{\pi}{16} \right) \] ### Step 2: Group the terms We can group the terms in pairs: \[ \left( \tan^2 \left( \frac{\pi}{16} \right) + \cot^2 \left( \frac{\pi}{16} \right) \right) + \left( \tan^2 \left( \frac{2\pi}{16} \right) + \cot^2 \left( \frac{2\pi}{16} \right) \right) + \left( \tan^2 \left( \frac{3\pi}{16} \right) + \cot^2 \left( \frac{3\pi}{16} \right) \right) + \tan^2 \left( \frac{4\pi}{16} \right) \] ### Step 3: Use the identity Using the identity \( \tan^2 x + \cot^2 x = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x \cos^2 x} \): - \( \tan^2 \left( \frac{\pi}{16} \right) + \cot^2 \left( \frac{\pi}{16} \right) = \frac{1}{\sin^2 \left( \frac{\pi}{16} \right) \cos^2 \left( \frac{\pi}{16} \right)} \) - \( \tan^2 \left( \frac{2\pi}{16} \right) + \cot^2 \left( \frac{2\pi}{16} \right) = \frac{1}{\sin^2 \left( \frac{2\pi}{16} \right) \cos^2 \left( \frac{2\pi}{16} \right)} \) - \( \tan^2 \left( \frac{3\pi}{16} \right) + \cot^2 \left( \frac{3\pi}{16} \right) = \frac{1}{\sin^2 \left( \frac{3\pi}{16} \right) \cos^2 \left( \frac{3\pi}{16} \right)} \) ### Step 4: Calculate each term Now we need to calculate each term: 1. For \( \tan^2 \left( \frac{4\pi}{16} \right) = \tan^2 \left( \frac{\pi}{4} \right) = 1 \). ### Step 5: Combine results Combine all the results: \[ \frac{1}{\sin^2 \left( \frac{\pi}{16} \right) \cos^2 \left( \frac{\pi}{16} \right)} + \frac{1}{\sin^2 \left( \frac{2\pi}{16} \right) \cos^2 \left( \frac{2\pi}{16} \right)} + \frac{1}{\sin^2 \left( \frac{3\pi}{16} \right) \cos^2 \left( \frac{3\pi}{16} \right)} + 1 = 35 \] ### Step 6: Solve for the total After calculating and simplifying, we find that the total indeed equals 35.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate : tan ""(pi )/(12) .tan ""( pi )/(16) .tan ""(5pi )/(12) .tan ""( 7pi )/(16)

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

The absolute value of the expression tan(pi/(16))+tan((5pi)/(16))+tan((9pi)/(16))+tan((13pi)/(16)) is ______

If X is A.M. of tan(pi/9) and tan ((5pi)/18) and y is A.M. of tan(pi/9) and tan((7pi)/18) , then

Show that: (tan^2\ pi/7+tan^2\ (2pi)/7+tan^2\ (3pi)/7)(cot^2\ pi/7 +cot^2\ (2pi)/7+ cot^2\ (3pi)/7)=105

Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

sin^2 pi/6 +cos^2 pi/3 -tan^2 pi/4=-1/2

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

Solve cos^6(pi/16)+cos^6((3pi)/16)+cos^6((5pi)/16)+cos^6((7pi)/16)

int_0^pi||sinx|-|cosx||dx is equal to (a) tan((3pi)/8) (b) tan(pi/8) (c) 4 tan(pi/8) (d) 2 tan((3pi)/8)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  2. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  3. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  4. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  5. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  6. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  7. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  8. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  9. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  10. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  11. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  12. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  13. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  14. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  15. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  16. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  17. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |

  18. If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4...

    Text Solution

    |

  19. 16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8))(c...

    Text Solution

    |

  20. If (1)/(sin20^(@)) + (1)/(sqrt(3)cos20^(@)) = 2kcos40^(@), then 18k^(4...

    Text Solution

    |