Home
Class 12
MATHS
If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(...

If `cos3 6^(@)+cot(7 1/2@)=sqrt(n_1)+sqrt(n_2)+sqrt(n_3)+sqrt(n_1)+sqrt(n_5)+sqrtn_6,` then the value of `sum_(i=1)^6 n_i^2` must be

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( \sum_{i=1}^{6} n_i^2 \). ### Step 1: Evaluate \( 4 \cos 36^\circ \) We know that: \[ \cos 36^\circ = \frac{\sqrt{5} + 1}{4} \] Thus, \[ 4 \cos 36^\circ = 4 \cdot \frac{\sqrt{5} + 1}{4} = \sqrt{5} + 1 \] ### Step 2: Evaluate \( \cot 7.5^\circ \) Using the identity for cotangent: \[ \cot 7.5^\circ = \frac{\cos 7.5^\circ}{\sin 7.5^\circ} \] We can express \( \cot 7.5^\circ \) in terms of sine and cosine: \[ \cot 7.5^\circ = \frac{2 \cos^2 7.5^\circ}{\sin 15^\circ} \] Using the double angle identity: \[ \sin 15^\circ = \sin(2 \cdot 7.5^\circ) = 2 \sin 7.5^\circ \cos 7.5^\circ \] Thus, \[ \cot 7.5^\circ = \frac{2 \cos^2 7.5^\circ}{2 \sin 7.5^\circ \cos 7.5^\circ} = \frac{\cos 7.5^\circ}{\sin 7.5^\circ} = \cot 7.5^\circ \] ### Step 3: Find \( \cot 7.5^\circ \) using known values Using the known values: \[ \cot 7.5^\circ = 2 + \sqrt{3} \] ### Step 4: Combine the results Now we can combine the results from Steps 1 and 3: \[ 4 \cos 36^\circ + \cot 7.5^\circ = (\sqrt{5} + 1) + (2 + \sqrt{3}) = \sqrt{5} + \sqrt{3} + 3 \] ### Step 5: Set up the equation We are given that: \[ \sqrt{n_1} + \sqrt{n_2} + \sqrt{n_3} + \sqrt{n_4} + \sqrt{n_5} + \sqrt{n_6} = \sqrt{5} + \sqrt{3} + 3 \] ### Step 6: Identify \( n_i \) From the equation, we can identify: - \( n_1 = 5 \) - \( n_2 = 3 \) - \( n_3 = 1 \) - \( n_4 = 4 \) - \( n_5 = 2 \) - \( n_6 = 6 \) ### Step 7: Calculate \( \sum_{i=1}^{6} n_i^2 \) Now we calculate: \[ \sum_{i=1}^{6} n_i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 \] Calculating each term: \[ 1^2 = 1, \quad 2^2 = 4, \quad 3^2 = 9, \quad 4^2 = 16, \quad 5^2 = 25, \quad 6^2 = 36 \] Adding these values together: \[ 1 + 4 + 9 + 16 + 25 + 36 = 91 \] ### Final Answer Thus, the value of \( \sum_{i=1}^{6} n_i^2 \) is \( \boxed{91} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 4cos36^(@)+cot(7(1^(@))/(2))=sqrt(n_(1))+sqrt(n_(2))+sqrt(n_(3))+sqrt(n_(4))+sqrt(n_(5))+sqrt(n_(6)) , then the value of ((Sigma_(i=1)^(6)n_(i)^(2))/(10)) is equal to

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let T_(n)=(1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrt(n+1))) and S_(n)=sum_(r=1)^(n)T_(r) then find S_(15) .

Let S=sum_(n=1)^(9999)1/((sqrt(n)+sqrt(n+1)) (^4sqrt(n)+^4sqrt(n+1)) , then S equals ___________.

Prove that 1+(1)/(sqrt2)+(1)/(sqrt3)+....+(1)/(sqrtn) ge sqrtn, AA n in N

Let S=Sigma_(n=1)^(999) (1)/((sqrt(n)+sqrt(n+1))(4sqrt(n)+4sqrtn+1)) , then S equals ___________.

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  2. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  3. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  4. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  5. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  6. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  7. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  8. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  9. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  10. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  11. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  12. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  13. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  14. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  15. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  16. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  17. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |

  18. If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4...

    Text Solution

    |

  19. 16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8))(c...

    Text Solution

    |

  20. If (1)/(sin20^(@)) + (1)/(sqrt(3)cos20^(@)) = 2kcos40^(@), then 18k^(4...

    Text Solution

    |