Home
Class 12
MATHS
If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/...

If `A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2)` then the value of `3k^(3)+2k^(2)+k+1` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = k \cdot \frac{\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)}{1} \] Given that \( A + B + C = 180^\circ \), we can use the property of angles in a triangle. Let’s assume \( A = B = C = 60^\circ \) (an equilateral triangle). ### Step 1: Calculate \( \sin 2A + \sin 2B + \sin 2C \) Since \( A = B = C = 60^\circ \): \[ \sin 2A = \sin 120^\circ = \frac{\sqrt{3}}{2} \] \[ \sin 2B = \sin 120^\circ = \frac{\sqrt{3}}{2} \] \[ \sin 2C = \sin 120^\circ = \frac{\sqrt{3}}{2} \] Adding these together: \[ \sin 2A + \sin 2B + \sin 2C = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] ### Step 2: Calculate \( \sin A + \sin B + \sin C \) Again, since \( A = B = C = 60^\circ \): \[ \sin A = \sin 60^\circ = \frac{\sqrt{3}}{2} \] \[ \sin B = \sin 60^\circ = \frac{\sqrt{3}}{2} \] \[ \sin C = \sin 60^\circ = \frac{\sqrt{3}}{2} \] Adding these together: \[ \sin A + \sin B + \sin C = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] ### Step 3: Substitute into the equation Now substituting these results into the original equation: \[ \frac{\frac{3\sqrt{3}}{2}}{\frac{3\sqrt{3}}{2}} = k \cdot \frac{\sin \left(\frac{60^\circ}{2}\right) \sin \left(\frac{60^\circ}{2}\right) \sin \left(\frac{60^\circ}{2}\right)}{1} \] This simplifies to: \[ 1 = k \cdot \left(\sin 30^\circ\right)^3 \] Since \( \sin 30^\circ = \frac{1}{2} \): \[ 1 = k \cdot \left(\frac{1}{2}\right)^3 = k \cdot \frac{1}{8} \] ### Step 4: Solve for \( k \) Multiplying both sides by 8: \[ k = 8 \] ### Step 5: Calculate \( 3k^3 + 2k^2 + k + 1 \) Now substituting \( k = 8 \) into the expression: \[ 3k^3 + 2k^2 + k + 1 = 3(8^3) + 2(8^2) + 8 + 1 \] Calculating each term: \[ 8^3 = 512 \quad \Rightarrow \quad 3(512) = 1536 \] \[ 8^2 = 64 \quad \Rightarrow \quad 2(64) = 128 \] \[ k = 8 \] \[ 1 = 1 \] Adding these together: \[ 1536 + 128 + 8 + 1 = 1673 \] ### Final Answer Thus, the value of \( 3k^3 + 2k^2 + k + 1 \) is: \[ \boxed{1673} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

(sin2A+sin2B+sin2C)/(sinA+sinB +sinC) is equal to

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C = 180^0 , Prove that : sin^2 (A/2) + sin^2 (B/2) + sin^2 (C/2) =1-2 sin (A/2) sin (B/2) sin (C/2)

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

In a DeltaA B C ,1/(1+tan^2(A/2))+1/(1+tan^2(B/2))+1/(1+tan^2(C/2))=k [1+sin(A/2) sin(B/2) sin(C/2)], then the value of k is

sin^2(A/2)+sin^2(B/2)-sin^2(C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Single Integer Answer Type Questions)
  1. Find theta (in degree) satisfying the equation,tan 15^@ *tan 25^@* ta...

    Text Solution

    |

  2. The value of "cosec"10^(@)+"cosec"50^(@)-"cosec"70^(@) is

    Text Solution

    |

  3. If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the poss...

    Text Solution

    |

  4. tan^2 ((pi)/16) + tan^2 ((2pi)/16) + tan^2((3pi)/16).........+tan^2((7...

    Text Solution

    |

  5. Compute the square of the value of the expression (4+sec 20^@)/(cosec ...

    Text Solution

    |

  6. In DeltaABC, if (sinA)/(3)=(cosB)/(3)=(tanC)/(2), then the value of ...

    Text Solution

    |

  7. It f and g be function defined by f(theta) = cos^2 theta and(theta) = ...

    Text Solution

    |

  8. If sum of the series 1+x log(|(1-sinx)/(cos x)|)((1+sin x)/(cos x))^(1...

    Text Solution

    |

  9. If 9x/costheta+5y/sintheta=56 and 9xsintheta/cos^2theta-5ycostheta/sin...

    Text Solution

    |

  10. The angle A of the DeltaABC is obtuse. x = 2635 - tan B tan C, if [x]...

    Text Solution

    |

  11. If cos3 6^(@)+cot(7 1/2@)=sqrt(n1)+sqrt(n2)+sqrt(n3)+sqrt(n1)+sqrt(n5)...

    Text Solution

    |

  12. If sin^(2)A=x and underset(r=1)overset(4)Pi sin (r A)=ax^(2)+bx^(3)+cx...

    Text Solution

    |

  13. If x,y in Rsatisfies (x+5)^(2)+(y-12)^(2)=(14)^(2) , then the minimum ...

    Text Solution

    |

  14. The least degree of a polynomial with integer coefficient whose one of...

    Text Solution

    |

  15. If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2...

    Text Solution

    |

  16. The value of f(x)=x^4+4x^3+2x^2-4x+7, when x=cot(11pi)/8 is

    Text Solution

    |

  17. In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((s...

    Text Solution

    |

  18. If sintheta+sin^2theta+sin^3theta=1, then prove that cos^6theta-4cos^4...

    Text Solution

    |

  19. 16(costheta-cos(pi/8))(costheta-cos((3pi)/8))(costheta-cos((5pi)/8))(c...

    Text Solution

    |

  20. If (1)/(sin20^(@)) + (1)/(sqrt(3)cos20^(@)) = 2kcos40^(@), then 18k^(4...

    Text Solution

    |