Home
Class 12
MATHS
If sin^ 4 x/2+cos^4 x/3 =1/5 then...

If `sin^ 4 x/2+cos^4 x/3 =1/5` then

A

`tan^(2)x=2/3`

B

`(sin^(8)x)/(8)+(cos^(8)x)/(27)=(1)/(125)`

C

`tan^(2)x=1/3`

D

`(sin^(8)x)/(8)+(cos^(8)x)/(27)=(2)/(125)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5} \] ### Step 2: Substitute \( \sin^4 x \) and \( \cos^4 x \) Recall that \( \sin^4 x = (\sin^2 x)^2 \) and \( \cos^4 x = (\cos^2 x)^2 \). We can express the equation as: \[ \frac{(\sin^2 x)^2}{2} + \frac{(\cos^2 x)^2}{3} = \frac{1}{5} \] ### Step 3: Let \( \sin^2 x = a \) and \( \cos^2 x = b \) Using the identity \( a + b = 1 \) (since \( \sin^2 x + \cos^2 x = 1 \)), we can rewrite \( b \) as \( 1 - a \). Thus, we have: \[ \frac{a^2}{2} + \frac{(1-a)^2}{3} = \frac{1}{5} \] ### Step 4: Expand \( (1-a)^2 \) Now, expand \( (1-a)^2 \): \[ (1-a)^2 = 1 - 2a + a^2 \] Substituting this back into the equation gives: \[ \frac{a^2}{2} + \frac{1 - 2a + a^2}{3} = \frac{1}{5} \] ### Step 5: Combine the fractions To combine the fractions, we need a common denominator, which is 6: \[ \frac{3a^2}{6} + \frac{2(1 - 2a + a^2)}{6} = \frac{1}{5} \] This simplifies to: \[ \frac{3a^2 + 2 - 4a + 2a^2}{6} = \frac{1}{5} \] Combining like terms gives: \[ \frac{5a^2 - 4a + 2}{6} = \frac{1}{5} \] ### Step 6: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 5(5a^2 - 4a + 2) = 6 \] Expanding this results in: \[ 25a^2 - 20a + 10 = 6 \] ### Step 7: Rearranging the equation Rearranging gives: \[ 25a^2 - 20a + 4 = 0 \] ### Step 8: Solve the quadratic equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( A = 25, B = -20, C = 4 \): \[ D = (-20)^2 - 4 \cdot 25 \cdot 4 = 400 - 400 = 0 \] Since the discriminant \( D = 0 \), there is one real solution: \[ a = \frac{20}{2 \cdot 25} = \frac{20}{50} = \frac{2}{5} \] ### Step 9: Find \( \sin^2 x \) and \( \cos^2 x \) Thus, we have: \[ \sin^2 x = a = \frac{2}{5} \] Using \( \cos^2 x = 1 - \sin^2 x \): \[ \cos^2 x = 1 - \frac{2}{5} = \frac{3}{5} \] ### Step 10: Find \( \tan^2 x \) Using the identity \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \): \[ \tan^2 x = \frac{\frac{2}{5}}{\frac{3}{5}} = \frac{2}{3} \] ### Final Result Thus, we have: \[ \sin^2 x = \frac{2}{5}, \quad \cos^2 x = \frac{3}{5}, \quad \tan^2 x = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If sin^4x/2+cos^4x/3=1/5 then

If (sin^4x)/2+(cos^4x)/3=1/5t h e n tan^2x=2/3 (b) (sin^8x)/8+(cos^8x)/(27)=1/(125) tan^2x=1/3 (d) (sin^8x)/8+(cos^8x)/(27)=2/(125)

Solve sin^4(x/3)+cos^4(x/3)>1/2

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/ 4 = 1/9 is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4cos(x y))/(3cos(x y)-4sin(x y)) (c) (3cos(x y)+4sin(x y))/(4cos(x y)-3sin(x y)) (d) none

Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise, if the value of sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b , where a and b are coprime, find the value of (a-b) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  2. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  3. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  4. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  7. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  8. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  9. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  10. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  11. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  12. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  13. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  14. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  15. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  16. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  17. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  18. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  19. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |