Home
Class 12
MATHS
Let theta in (0,pi/4) and t1=(tan theta)...

Let `theta in (0,pi/4) and t_1=(tan theta)^(tan theta), t_2=(tan theta)^(cot theta), t_3=(cot theta)^(tan theta) and t_4=(cot theta)^(cot theta),` then

A

`t_(1) gt t_(2) gt t_(3) gt t_(4)`

B

`t_(4) gt t_(3) gt t_(1) gt t_(2)`

C

`t_(3) gt t_(1) gt t_(2) gt t_(4)`

D

`t_(2) gt t_(3) gt t_(1) gt t_(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions \( t_1, t_2, t_3, \) and \( t_4 \) given in the question. We will evaluate these expressions for a specific value of \( \theta \) within the range \( (0, \frac{\pi}{4}) \). ### Step-by-step Solution: 1. **Define the expressions:** \[ t_1 = (\tan \theta)^{\tan \theta}, \quad t_2 = (\tan \theta)^{\cot \theta}, \quad t_3 = (\cot \theta)^{\tan \theta}, \quad t_4 = (\cot \theta)^{\cot \theta} \] 2. **Choose a value for \( \theta \):** Let's choose \( \theta = \frac{\pi}{6} \) (which is \( 30^\circ \)). This value lies in the interval \( (0, \frac{\pi}{4}) \). 3. **Calculate \( \tan \theta \) and \( \cot \theta \):** \[ \tan \left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}, \quad \cot \left(\frac{\pi}{6}\right) = \sqrt{3} \] 4. **Substitute into the expressions:** - For \( t_1 \): \[ t_1 = \left(\frac{1}{\sqrt{3}}\right)^{\frac{1}{\sqrt{3}}} \] - For \( t_2 \): \[ t_2 = \left(\frac{1}{\sqrt{3}}\right)^{\sqrt{3}} = \frac{1}{3} \] - For \( t_3 \): \[ t_3 = \left(\sqrt{3}\right)^{\frac{1}{\sqrt{3}}} \] - For \( t_4 \): \[ t_4 = \left(\sqrt{3}\right)^{\sqrt{3}} \] 5. **Evaluate the expressions:** - \( t_1 = \left(\frac{1}{\sqrt{3}}\right)^{\frac{1}{\sqrt{3}}} = 3^{-\frac{1}{6}} \) - \( t_2 = \frac{1}{3} = 3^{-1} \) - \( t_3 = \left(\sqrt{3}\right)^{\frac{1}{\sqrt{3}}} = 3^{\frac{1}{6}} \) - \( t_4 = \left(\sqrt{3}\right)^{\sqrt{3}} = 3^{\frac{3}{2}} \) 6. **Compare the values:** - \( t_4 = 3^{\frac{3}{2}} \) is the largest. - \( t_3 = 3^{\frac{1}{6}} \) is next. - \( t_1 = 3^{-\frac{1}{6}} \) is smaller than \( t_3 \). - \( t_2 = 3^{-1} \) is the smallest. 7. **Conclusion:** The order from greatest to least is: \[ t_4 > t_3 > t_1 > t_2 \] ### Final Answer: The correct sequence is \( t_4 > t_3 > t_1 > t_2 \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Let theta in (0,pi/4) and t_1=(tan theta)^(tan theta), t_2=(tan theta)6(cot theta), t_3=(cot theta)^(tan theta) and t_4=(cot theta)^(cot theta), then

Let theta in ( 0, pi/4) and t_1 = (tan theta)^(tan theta) , t_2 = (tan theta)^(cot theta), t_3 = ( cot theta)^(tan theta), t_4=(cot theta)^(cot theta) , then

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta) = (sec theta cosec theta +1)

Prove that : (tan theta)/(1 -cot theta) + (cot theta)/(1- tan theta) = 1 + sec theta cosec theta

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy=

Solve 2 tan theta-cot theta=-1 .

Solve 4cot2theta=cot^2theta-tan^2theta

y=1/((1+tan theta)^(sin theta-cos theta)+(cot theta)^(cos theta-cot theta))+ 1/((1+tan theta)^(cos theta-sin theta)+(cot theta)^(sin theta-cottheta)) +1/((1+tan theta)^(cos theta-cot theta)+(cot theta)^(cot theta-sin theta)) then (dy)/(dx) at theta=pi/3 is

Solve sin^2 theta tan theta+cos^2 theta cot theta-sin 2 theta=1+tan theta+cot theta

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  2. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  3. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  4. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  7. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  8. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  9. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  10. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  11. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  12. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  13. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  14. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  15. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  16. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  17. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  18. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  19. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |