Home
Class 12
MATHS
If A = sin^2x + cos^4 x, then for all re...

If `A = sin^2x + cos^4 x`, then for all real x :

A

`(13)/(16) le A le 1`

B

`1 le A le 2`

C

`3/4 le A le 13/16`

D

`3/4 le A le 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of \( A = \sin^2 x + \cos^4 x \) for all real \( x \), we can follow these steps: ### Step 1: Rewrite \( \cos^4 x \) We know that \( \cos^2 x = 1 - \sin^2 x \). Therefore, we can express \( \cos^4 x \) in terms of \( \sin^2 x \): \[ \cos^4 x = (\cos^2 x)^2 = (1 - \sin^2 x)^2 \] ### Step 2: Substitute \( \cos^4 x \) into \( A \) Now substitute \( \cos^4 x \) into the expression for \( A \): \[ A = \sin^2 x + (1 - \sin^2 x)^2 \] ### Step 3: Expand the expression Next, we expand \( (1 - \sin^2 x)^2 \): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] Now substitute this back into the expression for \( A \): \[ A = \sin^2 x + 1 - 2\sin^2 x + \sin^4 x \] ### Step 4: Combine like terms Combine the terms in the expression: \[ A = 1 - \sin^2 x + \sin^4 x \] ### Step 5: Let \( t = \sin^2 x \) Let \( t = \sin^2 x \). Since \( \sin^2 x \) can take values between 0 and 1, we can rewrite \( A \): \[ A = 1 - t + t^2 \] ### Step 6: Analyze the function \( A(t) \) Now we need to analyze the quadratic function \( A(t) = t^2 - t + 1 \). To find the minimum value, we can complete the square or use calculus. ### Step 7: Find the vertex of the quadratic The vertex of the quadratic \( A(t) = t^2 - t + 1 \) occurs at: \[ t = -\frac{b}{2a} = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] ### Step 8: Calculate \( A \) at the vertex Now substitute \( t = \frac{1}{2} \) back into \( A(t) \): \[ A\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 9: Find the maximum value of \( A \) Now we need to check the endpoints of the interval \( [0, 1] \): 1. For \( t = 0 \): \[ A(0) = 0^2 - 0 + 1 = 1 \] 2. For \( t = 1 \): \[ A(1) = 1^2 - 1 + 1 = 1 \] ### Conclusion Thus, the minimum value of \( A \) is \( \frac{3}{4} \) and the maximum value is \( 1 \). Therefore, the range of \( A \) is: \[ \frac{3}{4} \leq A \leq 1 \] ### Final Answer \[ \frac{3}{4} \leq A \leq 1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If A""=""sin^2x""+""cos^4x , then for all real x : (1) 3/4lt=Alt=1 (2) (13)/(16)lt=Alt=1 (3) 1lt=Alt=2 (4) 3/4lt=Alt=(13)/(16)

Let y=sin^(2)x+cos^(4)x . Then, for all real x (a) the maximum value of y is 2 (b) the minimum value of y is 3/4

Let f(x) = sin(x/3) + cos((3x)/10) for all real x. Find the least natural number n such that f(npi + x) = f(x) for all real x.

Solve sin 2x=4 cos x .

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

Let f(x) = sin^6x + cos^6x + k(sin^4 x + cos^4 x) for some real number k. Determine(a) all real numbers k for which f(x) is constant for all values of x.

If x=cos^2theta+sin^4theta then for all real values of theta

The set of values of k for which x^2 - kx + sin^-1 (sin 4) > 0 for all real x is

Let F(x) be an indefinite integral of sin^(2)x Statement I The function F(x) satisfies F(x+pi)=F(x) for all real x. Because Statement II sin^(2)(x+pi)=sin^(2)x, for all real x.

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  2. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  3. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  4. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  7. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  8. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  9. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  10. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  11. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  12. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  13. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  14. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  15. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  16. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  17. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  18. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  19. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |