Home
Class 12
MATHS
If cosalpha+cosbeta+cosgamma=0=sinalpha+...

If `cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma`, then which of the following is/are true:- (a)`cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-3/2` (b)`cos(alpha-beta)+cos(beta-gamma)+cos(gamma-delta)=-1/2` (c)`sumcos2alpha+2cos(alpha+beta)+2cos(beta+gamma)+2cos(gamma+alpha)=0` (d)`sumsin2alpha+2sin(alpha+beta)+2sin(beta+gamma)+2sin(gamma+alpha)=0`

A

A is true and B is false

B

A is false and B is true

C

Both A and B are true

D

Both A and B are false

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \( \cos \alpha + \cos \beta + \cos \gamma = 0 \) 2. \( \sin \alpha + \sin \beta + \sin \gamma = 0 \) From these equations, we can derive several relationships and analyze the options provided. ### Step 1: Analyze the equations We can rewrite the first equation as: \[ \cos \alpha + \cos \beta = -\cos \gamma \] And the second equation as: \[ \sin \alpha + \sin \beta = -\sin \gamma \] ### Step 2: Square both sides Squaring both sides of the first equation gives: \[ (\cos \alpha + \cos \beta)^2 = \cos^2 \gamma \] Expanding the left side: \[ \cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta = \cos^2 \gamma \] ### Step 3: Rearranging the equation Rearranging gives: \[ 2 \cos \alpha \cos \beta = \cos^2 \gamma - \cos^2 \alpha - \cos^2 \beta \] This is our first derived equation. ### Step 4: Similar approach for sine Using the second equation, we can square it as well: \[ (\sin \alpha + \sin \beta)^2 = \sin^2 \gamma \] Expanding gives: \[ \sin^2 \alpha + \sin^2 \beta + 2 \sin \alpha \sin \beta = \sin^2 \gamma \] Rearranging gives: \[ 2 \sin \alpha \sin \beta = \sin^2 \gamma - \sin^2 \alpha - \sin^2 \beta \] This is our second derived equation. ### Step 5: Adding the two derived equations Now, we can add the two derived equations: \[ 2 \cos \alpha \cos \beta + 2 \sin \alpha \sin \beta = (\cos^2 \gamma - \cos^2 \alpha - \cos^2 \beta) + (\sin^2 \gamma - \sin^2 \alpha - \sin^2 \beta) \] ### Step 6: Simplifying using Pythagorean identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can simplify: \[ \cos^2 \gamma + \sin^2 \gamma = 1 \] Thus, we can rewrite the right side as: \[ 1 - ( \cos^2 \alpha + \sin^2 \alpha + \cos^2 \beta + \sin^2 \beta ) = 1 - 2 \] This gives us: \[ 2 \cos \alpha \cos \beta + 2 \sin \alpha \sin \beta = -1 \] ### Step 7: Final simplification This can be rewritten as: \[ \cos(\alpha - \beta) = -\frac{1}{2} \] This means: \[ \cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = -\frac{3}{2} \] ### Conclusion From the analysis, we find that option (a) is true: - (a) \( \cos(\alpha - \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = -\frac{3}{2} \)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

If cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2 , prove that cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

Prove that: cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2) .

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  2. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  3. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  4. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  7. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  8. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  9. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  10. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  11. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  12. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  13. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  14. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  15. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  16. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  17. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  18. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  19. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |