Home
Class 12
MATHS
If 0 lt x lt pi and cos x + sin x = 1/2,...

If `0 lt x lt pi` and `cos x + sin x = 1/2`, then tan x is

A

`((4-sqrt(7)))/(3)`

B

`-((4+sqrt(7)))/(3)`

C

`((1+sqrt(7)))/(4)`

D

`((1-sqrt(7)))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\tan x\) given that \(\cos x + \sin x = \frac{1}{2}\) and \(0 < x < \pi\). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ \cos x + \sin x = \frac{1}{2} \] 2. **Square both sides**: \[ (\cos x + \sin x)^2 = \left(\frac{1}{2}\right)^2 \] This expands to: \[ \cos^2 x + 2\sin x \cos x + \sin^2 x = \frac{1}{4} \] 3. **Use the Pythagorean identity** \(\cos^2 x + \sin^2 x = 1\): \[ 1 + 2\sin x \cos x = \frac{1}{4} \] 4. **Rearrange the equation**: \[ 2\sin x \cos x = \frac{1}{4} - 1 \] Simplifying gives: \[ 2\sin x \cos x = -\frac{3}{4} \] 5. **Use the double angle identity** for sine: \[ \sin 2x = 2\sin x \cos x \] Thus: \[ \sin 2x = -\frac{3}{4} \] 6. **Set up the equation for \(\tan x\)**: We know that: \[ \sin 2x = \frac{2\tan x}{1 + \tan^2 x} \] Therefore: \[ \frac{2\tan x}{1 + \tan^2 x} = -\frac{3}{4} \] 7. **Cross-multiply to eliminate the fraction**: \[ 2\tan x = -\frac{3}{4}(1 + \tan^2 x) \] Expanding gives: \[ 2\tan x = -\frac{3}{4} - \frac{3}{4}\tan^2 x \] 8. **Rearranging the equation**: \[ \frac{3}{4}\tan^2 x + 2\tan x + \frac{3}{4} = 0 \] Multiplying through by 4 to eliminate the fraction: \[ 3\tan^2 x + 8\tan x + 3 = 0 \] 9. **Use the quadratic formula** to solve for \(\tan x\): The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 3\), \(b = 8\), and \(c = 3\): \[ \tan x = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] Simplifying: \[ \tan x = \frac{-8 \pm \sqrt{64 - 36}}{6} \] \[ \tan x = \frac{-8 \pm \sqrt{28}}{6} \] \[ \tan x = \frac{-8 \pm 2\sqrt{7}}{6} \] \[ \tan x = \frac{-4 \pm \sqrt{7}}{3} \] 10. **Final values of \(\tan x\)**: This gives us two possible values: \[ \tan x = \frac{-4 + \sqrt{7}}{3} \quad \text{and} \quad \tan x = \frac{-4 - \sqrt{7}}{3} \] Since \(0 < x < \pi\), we need to check which of these values is valid. The first value is valid as it is positive, while the second value is negative. ### Conclusion: Thus, the value of \(\tan x\) is: \[ \tan x = \frac{-4 + \sqrt{7}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|19 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt 2 pi and |cos x| le sin x , then

If 0 lt x lt pi/2 then

If 0 lt x lt pi /2 then

If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1 , then

If 0 lt x lt pi/4 and cos x+sin x=5/4 , find the numerical value of (4(cos x- sin x))/sqrt(7) , is

If 0 lt x lt (pi)/(2) and tan x = (a)/(2) , then cos x =

If 0 lt x lt (pi)/(2) and cos x = 0.34 , what is the value of sin ((x)/(2)) ?

If 0 lt x lt (pi)/(2) and tan 5x = 3 , to the nearest tenth , what is the value of tan x ?

If 0 le x le 2pi and sin x lt 0 , which of the following must be true ? I. cos x lt 0 II. csc x lt 0 III. |sin x + cos x|gt 0

If 0lt x lt 90^(@) and sin x=0.525 , what is the value of cos((x)/(3))

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let alpha and beta be non-zero real numbers such that 2 ( cos beta -...

    Text Solution

    |

  2. Let -pi/6 < theta < -pi/12. Suppose alpha1 and beta1, are the roots of...

    Text Solution

    |

  3. The value of overset(13)underset(k=1)(sum) (1)/(sin((pi)/(4) + ((k-1)p...

    Text Solution

    |

  4. Let f:(-1,1)vecR be such that f(cos4theta)=2/(2-sec^2theta) for theta ...

    Text Solution

    |

  5. The number of all possible values of theta, where 0 lt theta lt pi, fo...

    Text Solution

    |

  6. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  7. If sin^ 4 x/2+cos^4 x/3 =1/5 then

    Text Solution

    |

  8. Let theta in (0,pi/4) and t1=(tan theta)^(tan theta), t2=(tan theta)^(...

    Text Solution

    |

  9. cos(alpha-beta)=1a n dcos(alpha+beta)=l/e , where alpha,betamu in [-pi...

    Text Solution

    |

  10. If 5 (tan ^(2) x - cos ^(2) x ) = 2 cos 2x +9, then the value of cos 4...

    Text Solution

    |

  11. Let F(k)(x)=1/k (sin^(k)x+cos^(k)x), where x in R and k ge 1, then fin...

    Text Solution

    |

  12. The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s...

    Text Solution

    |

  13. If a Delta PQR " if" 3 sin P + 4 cos Q = 6 and 4 sin Q + 3 cos P =1 , ...

    Text Solution

    |

  14. If A = sin^2x + cos^4 x, then for all real x :

    Text Solution

    |

  15. Let cos(alpha+beta)""=4/5 and let sin (alpha+beta)""=5/(13) where 0lt=...

    Text Solution

    |

  16. If cosalpha+cosbeta+cosgamma=0=sinalpha+sinbeta+singamma, then which...

    Text Solution

    |

  17. A triangular park is enclosed on two sides by a fence and on the third...

    Text Solution

    |

  18. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  19. In Delta PQR , /R=pi/4, tan(P/3), tan(Q/3) are the roots of the equati...

    Text Solution

    |