Home
Class 12
MATHS
(a*hati)hati+(a*hatj)hatj+(a*hatk)hatk i...

`(a*hati)hati+(a*hatj)hatj+(a*hatk)hatk` is equal to

A

`a`

B

2a

C

3a

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a \hat{i}) \hat{i} + (a \hat{j}) \hat{j} + (a \hat{k}) \hat{k}\), we will break it down step by step. ### Step 1: Understand the Components Let \( \mathbf{a} = x \hat{i} + y \hat{j} + z \hat{k} \), where \(x\), \(y\), and \(z\) are the components of the vector \( \mathbf{a} \) along the \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) directions respectively. ### Step 2: Substitute \( \mathbf{a} \) into the Expression We can rewrite the expression as follows: \[ (\mathbf{a} \cdot \hat{i}) \hat{i} + (\mathbf{a} \cdot \hat{j}) \hat{j} + (\mathbf{a} \cdot \hat{k}) \hat{k} \] Now, we will calculate each dot product. ### Step 3: Calculate the Dot Products 1. **Calculate \( \mathbf{a} \cdot \hat{i} \)**: \[ \mathbf{a} \cdot \hat{i} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{i} = x (\hat{i} \cdot \hat{i}) + y (\hat{j} \cdot \hat{i}) + z (\hat{k} \cdot \hat{i}) = x \cdot 1 + 0 + 0 = x \] Thus, \( (\mathbf{a} \cdot \hat{i}) \hat{i} = x \hat{i} \). 2. **Calculate \( \mathbf{a} \cdot \hat{j} \)**: \[ \mathbf{a} \cdot \hat{j} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{j} = x (\hat{i} \cdot \hat{j}) + y (\hat{j} \cdot \hat{j}) + z (\hat{k} \cdot \hat{j}) = 0 + y \cdot 1 + 0 = y \] Thus, \( (\mathbf{a} \cdot \hat{j}) \hat{j} = y \hat{j} \). 3. **Calculate \( \mathbf{a} \cdot \hat{k} \)**: \[ \mathbf{a} \cdot \hat{k} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{k} = x (\hat{i} \cdot \hat{k}) + y (\hat{j} \cdot \hat{k}) + z (\hat{k} \cdot \hat{k}) = 0 + 0 + z \cdot 1 = z \] Thus, \( (\mathbf{a} \cdot \hat{k}) \hat{k} = z \hat{k} \). ### Step 4: Combine the Results Now, we can combine all the results: \[ (\mathbf{a} \cdot \hat{i}) \hat{i} + (\mathbf{a} \cdot \hat{j}) \hat{j} + (\mathbf{a} \cdot \hat{k}) \hat{k} = x \hat{i} + y \hat{j} + z \hat{k} \] This is simply \( \mathbf{a} \). ### Final Result Thus, the expression \((a \hat{i}) \hat{i} + (a \hat{j}) \hat{j} + (a \hat{k}) \hat{k}\) is equal to: \[ \mathbf{a} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hati+hatj+hatk and b=hati-hatj , then vectors ((a*hati)hati+(a*hatj)hatj+(a*hatk)hatk),{(b*hati)hati+(bhatj)hatj+(b*hatk)hatk} and( hati+hatj-2hatk)

The scalar product of the vector hati+hatj+hatk with a unit vector along the sum of the vectors 2hati+4hatj-5hatk and lamda hati+2hatj+3hatk is equal to one. Find the value of lamda .

If d is the shortest distance between the lines vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk) and vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk) then 125d^(2) is equal to ____________.

If a=hati+2hatj+3hatk,b=-hati+2hatj+hatk and c=3hati+hatj . If (a+tb) bot c , then t is equal to

Show that the line of intersection of the planes vecr*(hati+2hatj+3hatk)=0 and vecr*(3hati+2hatj+hatk)=0 is equally inclined to hati and hatk . Also find the angleit makes with hatj .

Vector equation of the plane r = hati-hatj+ lamda(hati +hatj+hatk)+mu(hati – 2hatj+3hatk) in the scalar dot product form is

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

Vectors perpendicular to hati-hatj-hatk and in the plane of hati+hatj+hatk and -hati+hatj+hatk are (A) hati+hatk (B) 2hati+hatj+hatk (C) 3hati+2hatj+hatk (D) -4hati-2hatj-2hatk

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. (a*hati)hati+(a*hatj)hatj+(a*hatk)hatk is equal to

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |