Home
Class 12
MATHS
The unit vector perpendicular to the vec...

The unit vector perpendicular to the vectors `6hati+2hatj+3hatk and 3hati-6hatj-2hatk`, is

A

`(2hati-3hatj+6hatk)/(7)`

B

`(2hati-3hatj-6hatk)/(7)`

C

`(2hati+3hatj-6hatk)/(7)`

D

`(2hati+3hatj+6hatk)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to the vectors \( \mathbf{A} = 6\hat{i} + 2\hat{j} + 3\hat{k} \) and \( \mathbf{B} = 3\hat{i} - 6\hat{j} - 2\hat{k} \), we will follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{A} = 6\hat{i} + 2\hat{j} + 3\hat{k} \] \[ \mathbf{B} = 3\hat{i} - 6\hat{j} - 2\hat{k} \] ### Step 2: Compute the cross product \( \mathbf{A} \times \mathbf{B} \) The cross product of two vectors \( \mathbf{A} \) and \( \mathbf{B} \) is given by the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 2 & 3 \\ 3 & -6 & -2 \end{vmatrix} \] Calculating this determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 2 & 3 \\ -6 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 6 & 3 \\ 3 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 6 & 2 \\ 3 & -6 \end{vmatrix} \] Calculating the minors: - For \( \hat{i} \): \[ \begin{vmatrix} 2 & 3 \\ -6 & -2 \end{vmatrix} = (2)(-2) - (3)(-6) = -4 + 18 = 14 \] - For \( \hat{j} \): \[ \begin{vmatrix} 6 & 3 \\ 3 & -2 \end{vmatrix} = (6)(-2) - (3)(3) = -12 - 9 = -21 \] - For \( \hat{k} \): \[ \begin{vmatrix} 6 & 2 \\ 3 & -6 \end{vmatrix} = (6)(-6) - (2)(3) = -36 - 6 = -42 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 14\hat{i} + 21\hat{j} - 42\hat{k} \] ### Step 3: Calculate the magnitude of \( \mathbf{A} \times \mathbf{B} \) The magnitude of the vector \( \mathbf{C} = \mathbf{A} \times \mathbf{B} \) is given by: \[ |\mathbf{C}| = \sqrt{(14)^2 + (21)^2 + (-42)^2} \] Calculating this: \[ |\mathbf{C}| = \sqrt{196 + 441 + 1764} = \sqrt{2401} = 49 \] ### Step 4: Find the unit vector The unit vector \( \mathbf{c} \) in the direction of \( \mathbf{C} \) is given by: \[ \mathbf{c} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{14\hat{i} + 21\hat{j} - 42\hat{k}}{49} \] ### Step 5: Simplify the unit vector Simplifying gives: \[ \mathbf{c} = \frac{14}{49}\hat{i} + \frac{21}{49}\hat{j} - \frac{42}{49}\hat{k} = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k} \] ### Final Answer Thus, the unit vector perpendicular to the given vectors is: \[ \mathbf{c} = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

What is the unit vector perpendicular to the following vectors 2hati+2hatj-hatk and 6hati-3hatj+2hatk

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

Find the unit vector perpendicular to the vectors vecA=(hati+2hatj-3hatk)andvecB=(-hati+hatj-hatk)

The number of vectors of units length perpendicular to both the vectors hati +2hatj - hatk and 2hati + 4hatj -2hatk is

Find the scalar components of a unit vector which is perpendicular to each of the vectors hati+2hatj-hatk and 3hati-hatj+2hatk .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3ha...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |