Home
Class 12
MATHS
If vec a, vec b and vec c are three non-...

If `vec a, vec b and vec c` are three non-coplanar unit vectors each inclined with other at an angle of `30^@,` then the volume of tetrahedron whose edges are `vec a,vec b, vec c` is (in cubic units)

A

`(sqrt(3sqrt(3)-5))/(12)`

B

`(3sqrt(3)-5)/(12)`

C

`(5sqrt(2)+3)/(12)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron formed by the non-coplanar unit vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) each inclined at an angle of \(30^\circ\) with each other, we can follow these steps: ### Step 1: Understand the Volume Formula The volume \(V\) of a tetrahedron formed by vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) can be calculated using the formula: \[ V = \frac{1}{6} |\vec{a} \cdot (\vec{b} \times \vec{c})| \] This is equivalent to the scalar triple product. ### Step 2: Calculate the Dot Products Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are unit vectors, we have: \[ |\vec{a}| = |\vec{b}| = |\vec{c}| = 1 \] We also know the angle between each pair of vectors is \(30^\circ\). Therefore, the dot products are: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(30^\circ) = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] Similarly, we have: \[ \vec{b} \cdot \vec{c} = \frac{\sqrt{3}}{2}, \quad \vec{c} \cdot \vec{a} = \frac{\sqrt{3}}{2} \] ### Step 3: Construct the Matrix for the Scalar Triple Product The scalar triple product can be represented as the determinant of the following matrix: \[ \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} = \begin{vmatrix} 1 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 1 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now, we calculate the determinant: \[ D = \begin{vmatrix} 1 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 1 \end{vmatrix} \] Using the determinant formula for a \(3 \times 3\) matrix, we can simplify this: \[ D = 1 \left( 1 \cdot 1 - \left(\frac{\sqrt{3}}{2}\right)^2 \right) - \frac{\sqrt{3}}{2} \left( \frac{\sqrt{3}}{2} \cdot 1 - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) + \frac{\sqrt{3}}{2} \left( \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \cdot 1 \right) \] Calculating this gives: \[ D = 1 \left( 1 - \frac{3}{4} \right) - \frac{\sqrt{3}}{2} \left( \frac{\sqrt{3}}{2} - \frac{3}{4} \right) + \frac{\sqrt{3}}{2} \left( \frac{3}{4} - \frac{\sqrt{3}}{2} \right) \] \[ = 1 \cdot \frac{1}{4} - \frac{\sqrt{3}}{2} \cdot \left( \frac{\sqrt{3}}{4} \right) + \frac{\sqrt{3}}{2} \cdot \left( \frac{3 - 2\sqrt{3}}{4} \right) \] ### Step 5: Final Volume Calculation After calculating the determinant \(D\), we find: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = \sqrt{D} \] Thus, the volume \(V\) of the tetrahedron is: \[ V = \frac{1}{6} \sqrt{D} \] ### Conclusion The volume of the tetrahedron formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) is given by: \[ V = \frac{1}{6} \sqrt{D} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec(a) and vec(b) are unit vectors inclined at an angle alpha , then the value of | vec(a) - vec(b)| is

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec adot( vec bxx vec c))/( vec b dot( vec cxx vec a))+( vec b dot( vec cxx vec a))/( vec c dot( vec axx vec b))+( vec c dot( vec bxx vec a))/( vec a dot( vec bxx vec c))dot

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If vec a, vec b and vec c are three non-coplanar unit vectors each inc...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |