Home
Class 12
MATHS
Let vec(a), vec(b), vec(c) be vectors of...

Let `vec(a), vec(b), vec(c)` be vectors of length `3, 4, 5` respectively. Let `vec(a)` be perpendicular to `vec(b)+vec(c), vec(b)` to `vec(c)+vec(a)` and `vec(c)` to `vec(a)+vec(b)`. Then `|vec(a)+vec(b)+vec(c)|` is :

A

`2sqrt(5)`

B

`2sqrt(2)`

C

`10sqrt(5)`

D

`5sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and derive the required modulus of the sum of the vectors. ### Step 1: Understand the conditions We have three vectors \( \vec{a}, \vec{b}, \vec{c} \) with lengths 3, 4, and 5 respectively. The conditions state that: - \( \vec{a} \) is perpendicular to \( \vec{b} + \vec{c} \) - \( \vec{b} \) is perpendicular to \( \vec{c} + \vec{a} \) - \( \vec{c} \) is perpendicular to \( \vec{a} + \vec{b} \) ### Step 2: Set up the equations From the perpendicularity conditions, we can write: 1. \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \) implies \( \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \) (Equation 1) 2. \( \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \) implies \( \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0 \) (Equation 2) 3. \( \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \) implies \( \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \) (Equation 3) ### Step 3: Add the equations Adding all three equations: \[ (\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a}) + (\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b}) = 0 \] This simplifies to: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] Thus, we have: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0 \quad \text{(Equation 4)} \] ### Step 4: Calculate the modulus of \( \vec{a} + \vec{b} + \vec{c} \) The modulus squared of the sum of the vectors is given by: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Substituting the lengths of the vectors: - \( |\vec{a}|^2 = 3^2 = 9 \) - \( |\vec{b}|^2 = 4^2 = 16 \) - \( |\vec{c}|^2 = 5^2 = 25 \) Thus: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 9 + 16 + 25 + 2(0) = 50 \] ### Step 5: Find the modulus Taking the square root gives: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{50} = 5\sqrt{2} \] ### Conclusion Therefore, the modulus of \( \vec{a} + \vec{b} + \vec{c} \) is \( 5\sqrt{2} \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec(C )= vec(A)+vec(B) then

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec(a),vec(b),vec(c) are mutually perpendicular vectors having magnitudes 1,2,3 respectively, then [vec(a)+vec(b)+vec(c)" "vec(b)-vec(a)" "vec(c)]=

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec(a), vec(b), vec(c ) are three vectors such that vec(a) + vec(b) + vec(c ) = 0 and | vec(a) | =2, |vec(b) | =3, | vec(c ) = 5 , then the value of vec(a). vec(b) + vec(b) . vec( c ) + vec(c ).vec(a) is

Show that vec(a), vec(b), vec(c ) are coplanar if and only if vec(a) + vec(b), vec(b) + vec(c ), vec( c) + vec(a) are coplanar

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

Three vector vec(A) , vec(B) , vec(C ) satisfy the relation vec(A)*vec(B)=0 and vec(A).vec(C )=0 . The vector vec(A) is parallel to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vec(a), vec(b), vec(c) be vectors of length 3, 4, 5 respectively. ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |