Home
Class 12
MATHS
Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/...

Let a,bgt0 and `alpha=(hati)/(a)+(4hatj)/(b)+bhatk` and `beta=bhati+ahattj+(1)/(b)hatk`, then the maximum value of `(10)/(5+alpha*beta)` is

A

1

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression \( \frac{10}{5 + \alpha \cdot \beta} \), where \( \alpha \) and \( \beta \) are given vectors. Let's go through the steps to find this maximum value. ### Step 1: Define the vectors \( \alpha \) and \( \beta \) Given: \[ \alpha = \frac{\hat{i}}{a} + \frac{4\hat{j}}{b} + b\hat{k} \] \[ \beta = b\hat{i} + a\hat{j} + \frac{1}{b}\hat{k} \] ### Step 2: Calculate the dot product \( \alpha \cdot \beta \) The dot product of two vectors is calculated as follows: \[ \alpha \cdot \beta = \left(\frac{1}{a}\hat{i} + \frac{4}{b}\hat{j} + b\hat{k}\right) \cdot \left(b\hat{i} + a\hat{j} + \frac{1}{b}\hat{k}\right) \] Calculating the dot product: \[ \alpha \cdot \beta = \left(\frac{1}{a} \cdot b\right) + \left(\frac{4}{b} \cdot a\right) + \left(b \cdot \frac{1}{b}\right) \] \[ = \frac{b}{a} + \frac{4a}{b} + 1 \] ### Step 3: Set up the expression to maximize We need to maximize: \[ \frac{10}{5 + \alpha \cdot \beta} = \frac{10}{5 + \left(\frac{b}{a} + \frac{4a}{b} + 1\right)} \] ### Step 4: Simplify the expression Substituting \( \alpha \cdot \beta \): \[ = \frac{10}{6 + \frac{b}{a} + \frac{4a}{b}} \] ### Step 5: Find the minimum value of \( \alpha \cdot \beta \) To maximize \( \frac{10}{5 + \alpha \cdot \beta} \), we need to minimize \( \alpha \cdot \beta \). We can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{\frac{b}{a} + \frac{4a}{b}}{2} \geq \sqrt{\frac{b}{a} \cdot \frac{4a}{b}} = 2 \] Thus, \[ \frac{b}{a} + \frac{4a}{b} \geq 4 \] Adding 1 to both sides: \[ \frac{b}{a} + \frac{4a}{b} + 1 \geq 5 \] ### Step 6: Substitute the minimum value into the expression The minimum value of \( \alpha \cdot \beta \) is 5. Therefore: \[ \frac{10}{5 + \alpha \cdot \beta} \leq \frac{10}{10} = 1 \] ### Conclusion The maximum value of \( \frac{10}{5 + \alpha \cdot \beta} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

. Let a, b > 0 and vecalpha=hati/a+4hatj/b+bhatk and beta=bhati+ahatj+hatk/b then the maximum value of 30/(5+alpha.beta)

If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha + beta = 90^0 , show that the maximum value of cos alpha.cos beta is 1/2 .

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

Let a^(2)+b^(2)=alpha^(2)+beta^(2)=2 . Then show that the maximum value of S=(1-a)(1-b)+(1-alpha)(1-beta) is 8.

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

If a vector 2hati +3hatj +8hatk is perpendicular to the vector 4hati -4hatj + alphahatk, then the value of alpha is

Let f(theta)=cottheta/(1+cottheta) and alpha+beta=(5pi)/4 then the value f(alpha)f (beta) is

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahatt...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |