Home
Class 12
MATHS
In a tetrahedron OABC, the edges are of ...

In a tetrahedron OABC, the edges are of lengths, `|OA|=|BC|=a,|OB|=|AC|=b,|OC|=|AB|=c.` Let `G_1 and G_2` be the centroids of the triangle ABC and AOC such that `OG_1 _|_ BG_2,` then the value of `(a^2+c^2)/b^2` is

A

2

B

3

C

6

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((a^2 + c^2)/b^2\) given the conditions of the tetrahedron \(OABC\) and the centroids \(G_1\) and \(G_2\). ### Step-by-Step Solution: 1. **Define the Vectors**: Let the position vectors of points \(O\), \(A\), \(B\), and \(C\) be represented as: \[ \vec{OA} = \vec{a}, \quad \vec{OB} = \vec{b}, \quad \vec{OC} = \vec{c} \] Given that: \[ |\vec{OA}| = |\vec{BC}| = a, \quad |\vec{OB}| = |\vec{AC}| = b, \quad |\vec{OC}| = |\vec{AB}| = c \] 2. **Find the Centroids**: The centroid \(G_1\) of triangle \(ABC\) is given by: \[ \vec{G_1} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] The centroid \(G_2\) of triangle \(AOC\) is given by: \[ \vec{G_2} = \frac{\vec{a} + \vec{c}}{3} \] 3. **Condition of Perpendicularity**: We are given that \(\vec{OG_1} \perp \vec{BG_2}\). This translates to: \[ \vec{OG_1} \cdot \vec{BG_2} = 0 \] Where: \[ \vec{OG_1} = \vec{G_1} = \frac{\vec{a} + \vec{b} + \vec{c}}{3} \] and \[ \vec{BG_2} = \vec{G_2} - \vec{b} = \frac{\vec{a} + \vec{c}}{3} - \vec{b} = \frac{\vec{a} + \vec{c} - 3\vec{b}}{3} \] 4. **Dot Product Calculation**: Now, substituting into the dot product condition: \[ \left(\frac{\vec{a} + \vec{b} + \vec{c}}{3}\right) \cdot \left(\frac{\vec{a} + \vec{c} - 3\vec{b}}{3}\right) = 0 \] This simplifies to: \[ (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{c} - 3\vec{b}) = 0 \] 5. **Expanding the Dot Product**: Expanding the dot product gives: \[ \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{c} - 3\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} - 3\vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} - 3\vec{c} \cdot \vec{b} = 0 \] Using the fact that \(\vec{a} \cdot \vec{b} = 0\), \(\vec{b} \cdot \vec{c} = 0\), and \(\vec{c} \cdot \vec{a} = 0\) (since the edges are mutually perpendicular), we simplify this to: \[ |\vec{a}|^2 + |\vec{c}|^2 - 3|\vec{b}|^2 = 0 \] 6. **Final Equation**: Rearranging gives: \[ |\vec{a}|^2 + |\vec{c}|^2 = 3|\vec{b}|^2 \] Therefore, we can express this as: \[ \frac{|\vec{a}|^2 + |\vec{c}|^2}{|\vec{b}|^2} = 3 \] ### Conclusion: Thus, the value of \(\frac{a^2 + c^2}{b^2}\) is \(3\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

Let G be the centroid of the DeltaABC , whose sides are of lengths a,b,c. If P be a point in the plane of triangleABC , such that PA=1,PB=3, PC=4 and PG=2 , then the value of a^(2)+b^(2)+c^(2) is

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

If origin is the centroid of a triangle ABC having vertices A(a,1,3), B(-2,b,-5) and C(4,7, c) , then the values of a, b, c are

If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : tan ^(2) C - sec ^(2)B +2

In Delta ABC, a=5, b=4, c=3. G is the centroid of triangle. If R_(1) be the circum radius of triangle GAB then the value of (a)/(65) R_(1)^(2) must be

In a triangle ABC if tan.(A)/(2)tan.(B)/(2)=(1)/(3) and ab = 4, then the value of c can be

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : sin ^(2) B + cos ^(2) C

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. In a tetrahedron OABC, the edges are of lengths, |OA|=|BC|=a,|OB|=|AC|...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |