Home
Class 12
MATHS
The unit vector in XOZ plane and making ...

The unit vector in `XOZ` plane and making angles `45^@` and `60^@` respectively with `vec(a)=2i+2j-k` and `vecb=0i+j-k`, is

A

`(1)/(sqrt(2))(-hati+hatk)`

B

`(1)/(sqrt(2))(hati-hatk)`

C

`(sqrt(3))/(2)(hati+hatk)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a unit vector \( \vec{L} \) in the \( XOZ \) plane that makes angles of \( 45^\circ \) and \( 60^\circ \) with the vectors \( \vec{a} = 2\hat{i} + 2\hat{j} - \hat{k} \) and \( \vec{b} = 0\hat{i} + \hat{j} - \hat{k} \) respectively. ### Step-by-Step Solution: 1. **Define the Unit Vector in the XOZ Plane:** Since the unit vector \( \vec{L} \) lies in the \( XOZ \) plane, we can express it as: \[ \vec{L} = a\hat{i} + b\hat{k} \] where \( a \) and \( b \) are the components along the \( x \) and \( z \) axes respectively. 2. **Magnitude of the Unit Vector:** The magnitude of \( \vec{L} \) must equal 1 because it is a unit vector: \[ \sqrt{a^2 + b^2} = 1 \implies a^2 + b^2 = 1 \quad \text{(Equation 1)} \] 3. **Dot Product with Vector \( \vec{a} \):** The unit vector \( \vec{L} \) makes an angle of \( 45^\circ \) with \( \vec{a} \). Using the dot product formula: \[ \vec{L} \cdot \vec{a} = |\vec{L}| |\vec{a}| \cos(45^\circ) \] Calculating \( |\vec{a}| \): \[ |\vec{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] Thus, we have: \[ \vec{L} \cdot \vec{a} = (a\hat{i} + b\hat{k}) \cdot (2\hat{i} + 2\hat{j} - \hat{k}) = 2a + 0 - b = 2a - b \] Therefore, we can write: \[ 2a - b = 3 \cdot \frac{1}{\sqrt{2}} \quad \text{(Equation 2)} \] 4. **Dot Product with Vector \( \vec{b} \):** The unit vector \( \vec{L} \) also makes an angle of \( 60^\circ \) with \( \vec{b} \): \[ \vec{L} \cdot \vec{b} = |\vec{L}| |\vec{b}| \cos(60^\circ) \] Calculating \( |\vec{b}| \): \[ |\vec{b}| = \sqrt{0^2 + 1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] Thus, we have: \[ \vec{L} \cdot \vec{b} = (a\hat{i} + b\hat{k}) \cdot (0\hat{i} + \hat{j} - \hat{k}) = 0 + 0 - b = -b \] Therefore, we can write: \[ -b = 1 \cdot \frac{1}{2} \implies b = -\frac{1}{2} \quad \text{(Equation 3)} \] 5. **Substituting \( b \) into Equation 1:** Substitute \( b = -\frac{1}{2} \) into Equation 1: \[ a^2 + \left(-\frac{1}{2}\right)^2 = 1 \implies a^2 + \frac{1}{4} = 1 \implies a^2 = 1 - \frac{1}{4} = \frac{3}{4} \implies a = \pm \frac{\sqrt{3}}{2} \] 6. **Finding the Unit Vector \( \vec{L} \):** We can take \( a = \frac{\sqrt{3}}{2} \) (the positive root) for the unit vector: \[ \vec{L} = \frac{\sqrt{3}}{2}\hat{i} - \frac{1}{2}\hat{k} \] 7. **Final Form of the Unit Vector:** To express \( \vec{L} \) in a more standard form, we can factor out \( \frac{1}{2} \): \[ \vec{L} = \frac{1}{2} \left( \sqrt{3}\hat{i} - \hat{k} \right) \] ### Conclusion: The unit vector \( \vec{L} \) in the \( XOZ \) plane making angles of \( 45^\circ \) and \( 60^\circ \) with the given vectors is: \[ \vec{L} = \frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector in XY plane, which makes an angle of 45^@ with the vector hat i +hat j and an angle of 60^@ with the vector 3hat i – 4hat j .

Find the unit vector in the direction of the sum of the vectors, vec a=2 hat i+2 hat j-5 hat k and vec b=2 hat i+ hat j+3 hat k .

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

The angles with a vector hat(i)+hat(j)+sqrt(2hat(k)) makes with X,Y and Z axes respectively are

Write a unit vector in the direction of the sum of the vectors vec a=2 hat i+2 hat j-5 hat k\ a n d\ vec b=2 hat i+ hat j-7 hat kdot

Find the unit vector in the direction of vec a+ vec b ,\ if\ vec a=2 hat i- hat j+2 hat k\ a n d\ vec b=- hat i+ hat j- hat kdot

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

If vectors vecA and vecB are 3i -4j + 5k and 2i + 3j - 4k respectively then find the unit vector parallel to vecA + vecB

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Find a unit vector perpendicular to the plane containing the vectors vec a=2 hat i+ hat j+ hat k\ a n d\ vec b= hat i+2 hat j+ hat kdot

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The unit vector in XOZ plane and making angles 45^@ and 60^@ respectiv...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |