Home
Class 12
MATHS
For any vectors a,b,|axxb|^(2)+(a*b)^(2)...

For any vectors `a,b,|axxb|^(2)+(a*b)^(2)` is equal to

A

`|a|^(2)|b|^(2)`

B

`|a+b|`

C

`|a|^(2)-|b|^(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( | \mathbf{a} \times \mathbf{b} |^2 + ( \mathbf{a} \cdot \mathbf{b} )^2 \), we will follow these steps: ### Step 1: Understand the Cross Product The magnitude of the cross product of two vectors \(\mathbf{a}\) and \(\mathbf{b}\) can be expressed as: \[ | \mathbf{a} \times \mathbf{b} | = |\mathbf{a}| |\mathbf{b}| \sin \theta \] where \(\theta\) is the angle between the vectors \(\mathbf{a}\) and \(\mathbf{b}\). ### Step 2: Square the Cross Product Now, squaring the magnitude of the cross product gives: \[ | \mathbf{a} \times \mathbf{b} |^2 = (|\mathbf{a}| |\mathbf{b}| \sin \theta)^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta \] ### Step 3: Understand the Dot Product The dot product of two vectors \(\mathbf{a}\) and \(\mathbf{b}\) can be expressed as: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \] ### Step 4: Square the Dot Product Now, squaring the dot product gives: \[ ( \mathbf{a} \cdot \mathbf{b} )^2 = (|\mathbf{a}| |\mathbf{b}| \cos \theta)^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \cos^2 \theta \] ### Step 5: Add the Two Results Now we add the squared cross product and squared dot product: \[ | \mathbf{a} \times \mathbf{b} |^2 + ( \mathbf{a} \cdot \mathbf{b} )^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \sin^2 \theta + |\mathbf{a}|^2 |\mathbf{b}|^2 \cos^2 \theta \] ### Step 6: Factor Out Common Terms We can factor out \( |\mathbf{a}|^2 |\mathbf{b}|^2 \): \[ = |\mathbf{a}|^2 |\mathbf{b}|^2 (\sin^2 \theta + \cos^2 \theta) \] ### Step 7: Use the Pythagorean Identity Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = |\mathbf{a}|^2 |\mathbf{b}|^2 \cdot 1 = |\mathbf{a}|^2 |\mathbf{b}|^2 \] ### Conclusion Thus, we conclude that: \[ | \mathbf{a} \times \mathbf{b} |^2 + ( \mathbf{a} \cdot \mathbf{b} )^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \] ### Final Answer The final answer is: \[ | \mathbf{a} \times \mathbf{b} |^2 + ( \mathbf{a} \cdot \mathbf{b} )^2 = |\mathbf{a}|^2 |\mathbf{b}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If theta is the angle between any two vectors vec a and vec b , then vec a. vec b=| vec axx vec b| when theta is equal to (a) 0 (B) pi/4 (C) pi/2 (d) pi

Prove that the product of the perpendicular from the foci on any tangent to the ellips (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 is equal to b^(2)

For any three unequal numbers a,b and c (a-b)/(b-c) equals to

If a+b+c=0, "then "axxb is equal to

Prove that |axxb|^2 =a^2b^2 - (a.b)^2

Prove that |axxb|^2 =a^2b^2 - (a.b)^2

p=2a-3b,q=a-2b+c and r=-3a+b+2c , where a,b,c being non-coplanar vectors, then the vector -2a+3b-c is equal to

If vectors a=2hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat(k) , then (projection of vector a on b vectors)/(projection of vector b on a vector) is equal to

If [axxb bxxc c xxa]=lambda[abc]^(2) , then lambda is equal to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. For any vectors a,b,|axxb|^(2)+(a*b)^(2) is equal to

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |