Home
Class 12
MATHS
The vector r satisfying the conditions t...

The vector r satisfying the conditions that I. it is perrpendicular to `3hati+2hatj+2hatk and 18hati-22hatj-5hatk` II. It makes an obtuse angle with Y-axis III. `|r|=14`.

A

`2(-2hati-3hatj+6hatk)`

B

`2(2hati-3hatj+6hatk)`

C

`4hati+6hatj-12hatk`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \mathbf{r} \) that satisfies the following conditions: 1. It is perpendicular to the vectors \( \mathbf{a} = 3\hat{i} + 2\hat{j} + 2\hat{k} \) and \( \mathbf{b} = 18\hat{i} - 22\hat{j} - 5\hat{k} \). 2. It makes an obtuse angle with the Y-axis. 3. The magnitude of \( \mathbf{r} \) is \( | \mathbf{r} | = 14 \). ### Step 1: Find the Cross Product of the Two Vectors Since \( \mathbf{r} \) is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \), we can find \( \mathbf{r} \) using the cross product \( \mathbf{r} = \mathbf{a} \times \mathbf{b} \). \[ \mathbf{r} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 2 \\ 18 & -22 & -5 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{r} = \hat{i} \begin{vmatrix} 2 & 2 \\ -22 & -5 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 18 & -5 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 2 \\ 18 & -22 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 2 & 2 \\ -22 & -5 \end{vmatrix} = (2)(-5) - (2)(-22) = -10 + 44 = 34 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 2 \\ 18 & -5 \end{vmatrix} = (3)(-5) - (2)(18) = -15 - 36 = -51 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & 2 \\ 18 & -22 \end{vmatrix} = (3)(-22) - (2)(18) = -66 - 36 = -102 \] Putting it all together: \[ \mathbf{r} = 34\hat{i} + 51\hat{j} - 102\hat{k} \] ### Step 2: Express \( \mathbf{r} \) in Terms of a Scalar \( \lambda \) Since \( \mathbf{r} \) can be expressed as a scalar multiple of the vector we found, we write: \[ \mathbf{r} = \lambda (34\hat{i} + 51\hat{j} - 102\hat{k}) \] ### Step 3: Use the Magnitude Condition We know that \( |\mathbf{r}| = 14 \): \[ |\mathbf{r}| = |\lambda| \sqrt{34^2 + 51^2 + (-102)^2} = 14 \] Calculating \( \sqrt{34^2 + 51^2 + (-102)^2} \): \[ 34^2 = 1156, \quad 51^2 = 2601, \quad (-102)^2 = 10404 \] \[ 34^2 + 51^2 + (-102)^2 = 1156 + 2601 + 10404 = 14261 \] Thus, \[ |\lambda| \sqrt{14261} = 14 \] \[ |\lambda| = \frac{14}{\sqrt{14261}} \] ### Step 4: Determine the Sign of \( \lambda \) Since \( \mathbf{r} \) must make an obtuse angle with the Y-axis, we need the \( j \)-component of \( \mathbf{r} \) to be negative. The \( j \)-component of \( \mathbf{r} \) is \( \lambda \cdot 51 \). Therefore, we need: \[ \lambda < 0 \] ### Step 5: Calculate \( \lambda \) From the magnitude condition: \[ |\lambda| = \frac{14}{\sqrt{14261}} \implies \lambda = -\frac{14}{\sqrt{14261}} \] ### Step 6: Substitute \( \lambda \) Back into \( \mathbf{r} \) Now substitute \( \lambda \) back into the expression for \( \mathbf{r} \): \[ \mathbf{r} = -\frac{14}{\sqrt{14261}} (34\hat{i} + 51\hat{j} - 102\hat{k}) \] ### Final Result Thus, the vector \( \mathbf{r} \) is: \[ \mathbf{r} = -\frac{476}{\sqrt{14261}} \hat{i} - \frac{714}{\sqrt{14261}} \hat{j} + \frac{1428}{\sqrt{14261}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

A vector vecc of magnitude sqrt(7) which is perpendicular to the vector veca=2hatj-hatk and vecb=-hati+2hatj-3hatk and makes an obtuse angle with the y-axis is given by

Unit vector perpnicular to vector A=-3hati-2hatj -3hatk and 2hati + 4hatj +6hatk is

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

Show that the vectors 2hati-hatj+hatk and hati-3hatj-5hatk are at righat angles.

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

The vector vecB=5hati+2hatj-Shatk is perpendicular to the vector vecA=3hati+hatj+2hatk if S=

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The vector r satisfying the conditions that I. it is perrpendicular t...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |