Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar vec...

If `veca, vecb, vecc` are non coplanar vectors and `lamda` is a real number, then `[(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)]` for

A

exactly two values of `lamda`

B

exactly one value of `lamda`

C

exactly three values of `lamda`.

D

no value of `lamda`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the box product of vectors. The box product is defined as the scalar triple product of three vectors. We will denote the vectors as \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), and we are given the equation: \[ [\lambda(\vec{a} + \vec{b}), \lambda^2 \vec{b}, \lambda \vec{c}] = [\vec{a}, \vec{b} + \vec{c}, \vec{b}] \] ### Step 1: Rewrite the Box Product The box product can be expressed as: \[ [\vec{x}, \vec{y}, \vec{z}] = \vec{x} \cdot (\vec{y} \times \vec{z}) \] Applying this to both sides of the equation, we have: \[ \lambda(\vec{a} + \vec{b}) \cdot (\lambda^2 \vec{b} \times \lambda \vec{c}) = \vec{a} \cdot ((\vec{b} + \vec{c}) \times \vec{b}) \] ### Step 2: Simplify the Left Side On the left side, we can simplify: \[ \lambda(\vec{a} + \vec{b}) \cdot (\lambda^3 (\vec{b} \times \vec{c})) = \lambda^4 (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) \] ### Step 3: Simplify the Right Side Now simplifying the right side: \[ \vec{a} \cdot ((\vec{b} + \vec{c}) \times \vec{b}) = \vec{a} \cdot (\vec{b} \times \vec{b} + \vec{c} \times \vec{b}) \] Since \(\vec{b} \times \vec{b} = \vec{0}\), we have: \[ \vec{a} \cdot (\vec{c} \times \vec{b}) \] ### Step 4: Equate Both Sides Now we can equate both sides: \[ \lambda^4 (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{c} \times \vec{b}) \] ### Step 5: Analyze the Equation We can rewrite the left side: \[ \lambda^4 (\vec{a} \cdot (\vec{b} \times \vec{c}) + \vec{b} \cdot (\vec{b} \times \vec{c})) \] Since \(\vec{b} \cdot (\vec{b} \times \vec{c}) = 0\), we have: \[ \lambda^4 \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot (\vec{c} \times \vec{b}) \] ### Step 6: Factor Out \(\vec{a}\) Assuming \(\vec{a}\) is non-zero, we can divide both sides by \(\vec{a}\): \[ \lambda^4 = 1 \] ### Step 7: Solve for \(\lambda\) The solutions to this equation are: \[ \lambda = 1, -1 \] ### Conclusion Thus, there are exactly two values of \(\lambda\) that satisfy the equation. ### Final Answer The correct option is: **exactly two values of \(\lambda\)**. ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vecc and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vec and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb, vecc , be three on zero non coplanar vectors estabish a linear relation between the vectors: 8vecb+6vecc, veca+vecb+vecc, 2veca-vecb+vecc, veca-vecb-vecc

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are three given non-coplanar vectors and any arbitrary vector vecr in space, where Delta_(1)=|{:(vecr.veca,vecb.veca,vecc.veca),(vecr.vecb,vecb.vecb,vecc.vecb),(vecr.vecc,vecb.vecc,vecc.vecc):}|,Delta_(2)=|{:(veca.veca,vecr.veca,vecc.veca),(veca.vecb,vecr.vecb,vecc.vecb),(veca.vecc,vecr.vecc ,vecc.vecc):}| Delta_(3)=|{:(veca.veca,vecb.veca,vecr.veca),(veca.vecb,vecb.vecb,vecr.vecb),(veca.vecc,vecb.vecc,vecr.vecc):}|, Delta=|{:(veca.veca,vecb.veca,vecc.veca),(veca.vecb,vecb.vecb,vecc.vecb),(veca.vecc,vecb.vecc,vecc.vecc):}|, "then prove that " vecr=(Delta_(1))/Deltaveca+(Delta_(2))/Deltavecb+(Delta_(3))/Deltavecc

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If veca, vecb, vecc are non coplanar vectors and lamda is a real numbe...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |