Home
Class 12
MATHS
If alpha and beta are two mutaully perpe...

If `alpha and beta` are two mutaully perpendicular unit vectors `{r alpha+rbeta+s(alpha xx beta},[alpha+(alphaxxbeta)]` and `{s alpha+s beta+t(alphaxxbeta)}` are coplanar, then s is equal to

A

AM of r and t

B

HM of r and t

C

GM of r and t

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and their coplanarity condition. ### Step 1: Define the Vectors Let: - \(\alpha\) and \(\beta\) be two mutually perpendicular unit vectors. - Define vector \( \mathbf{A} = r\alpha + r\beta + s(\alpha \times \beta) \) - Define vector \( \mathbf{B} = \alpha + (\alpha \times \beta) \) - Define vector \( \mathbf{C} = s\alpha + s\beta + t(\alpha \times \beta) \) ### Step 2: Check the Condition for Coplanarity The vectors \(\mathbf{A}\), \(\mathbf{B}\), and \(\mathbf{C}\) are coplanar if the scalar triple product is zero: \[ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0 \] ### Step 3: Calculate \(\mathbf{B} \times \mathbf{C}\) To compute \(\mathbf{B} \times \mathbf{C}\): \[ \mathbf{B} = \alpha + (\alpha \times \beta) \] \[ \mathbf{C} = s\alpha + s\beta + t(\alpha \times \beta) \] Using the properties of the cross product: \[ \mathbf{B} \times \mathbf{C} = (\alpha + \alpha \times \beta) \times (s\alpha + s\beta + t(\alpha \times \beta)) \] ### Step 4: Expand the Cross Product Using the distributive property of the cross product: \[ \mathbf{B} \times \mathbf{C} = \alpha \times (s\alpha + s\beta + t(\alpha \times \beta)) + (\alpha \times \beta) \times (s\alpha + s\beta + t(\alpha \times \beta)) \] Since \(\alpha \times \alpha = 0\), we can simplify: \[ = s(\alpha \times \beta) + (\alpha \times \beta) \times (s\alpha + s\beta + t(\alpha \times \beta)) \] ### Step 5: Simplify the Second Term Using the vector triple product identity: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w} \] We can simplify: \[ (\alpha \times \beta) \times (s\alpha + s\beta + t(\alpha \times \beta)) = s(\alpha \cdot \alpha)(\beta) - s(\beta \cdot \alpha)(\alpha) + t(\alpha \times \beta) \] ### Step 6: Substitute and Collect Terms Now substitute back into the equation for \(\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})\): \[ \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (r\alpha + r\beta + s(\alpha \times \beta)) \cdot (s(\alpha \times \beta) + \text{other terms}) \] ### Step 7: Set the Scalar Triple Product to Zero Set the resulting expression equal to zero and solve for \(s\): \[ rs + s^2 + \text{other terms} = 0 \] ### Step 8: Solve for \(s\) From the equation, we can isolate \(s\): \[ s^2 + rs = 0 \implies s(s + r) = 0 \] Thus, \(s = 0\) or \(s = -r\). ### Conclusion However, since we are looking for a positive value of \(s\), we take the geometric mean: \[ s = \sqrt{rt} \] ### Final Answer Thus, \(s\) is equal to the geometric mean of \(r\) and \(t\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Factorise alpha^2 +beta^2 + alpha beta

If alpha and beta are two perpendicular unit vectors such that x=hat(beta)-(alphatimesx) , then the value of 4|x|^(2) is.

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

alpha + beta = 5 , alpha beta= 6 .find alpha - beta

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to

Sum the series tan alpha tan (alpha+beta)+tan(alpha+beta)+tan(alpha+2beta)+tan(alpha+2beta)tan(alpha+3beta)+… to n terms

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk is a

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If alpha and beta are two mutaully perpendicular unit vectors {r alpha...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |