Home
Class 12
MATHS
Let vecb=-veci+4vecj+6veck, vecc=2veci-7...

Let `vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck.` If `veca` be a unit vector and the scalar triple product `[veca vecb vecc]` has the greatest value then `veca` is

A. `(1)/(sqrt(3))(hati+hatj+hatk)`
B. `(1)/(sqrt(5))(sqrt(2)hati-hatj-sqrt(2)hatk)`
C. `(1)/(3)(2hati+2hatj-hatk)`
D. `(1)/(sqrt(59))(3hati-7hatj-hatk)`

A

`(1)/(sqrt(3))(hati+hatj+hatk)`

B

`(1)/(sqrt(5))(sqrt(2)hati-hatj-sqrt(2)hatk)`

C

`(1)/(3)(2hati+2hatj-hatk)`

D

`(1)/(sqrt(59))(3hati-7hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \(\vec{a}\) such that the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) is maximized. The vectors \(\vec{b}\) and \(\vec{c}\) are given as: \[ \vec{b} = -\hat{i} + 4\hat{j} + 6\hat{k} \] \[ \vec{c} = 2\hat{i} - 7\hat{j} - 10\hat{k} \] ### Step 1: Compute the cross product \(\vec{b} \times \vec{c}\) The cross product \(\vec{b} \times \vec{c}\) can be computed using the determinant of a matrix: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 4 & 6 \\ 2 & -7 & -10 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 4 & 6 \\ -7 & -10 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 6 \\ 2 & -10 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 4 \\ 2 & -7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 4 & 6 \\ -7 & -10 \end{vmatrix} = (4)(-10) - (6)(-7) = -40 + 42 = 2\) 2. \(\begin{vmatrix} -1 & 6 \\ 2 & -10 \end{vmatrix} = (-1)(-10) - (6)(2) = 10 - 12 = -2\) 3. \(\begin{vmatrix} -1 & 4 \\ 2 & -7 \end{vmatrix} = (-1)(-7) - (4)(2) = 7 - 8 = -1\) Putting it all together: \[ \vec{b} \times \vec{c} = 2\hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Find the unit vector \(\vec{a}\) To maximize the scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\), \(\vec{a}\) must be parallel to \(\vec{b} \times \vec{c}\). Therefore, we can express \(\vec{a}\) as: \[ \vec{a} = k(2\hat{i} + 2\hat{j} - \hat{k}) \] where \(k\) is a scalar. ### Step 3: Normalize \(\vec{a}\) Since \(\vec{a}\) is a unit vector, we need to find \(k\) such that: \[ |\vec{a}| = 1 \implies |k| \cdot |(2\hat{i} + 2\hat{j} - \hat{k})| = 1 \] Calculating the magnitude of \((2\hat{i} + 2\hat{j} - \hat{k})\): \[ |(2\hat{i} + 2\hat{j} - \hat{k})| = \sqrt{2^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] Thus, \[ |k| \cdot 3 = 1 \implies |k| = \frac{1}{3} \] ### Step 4: Determine the possible values of \(\vec{a}\) This gives us two possible unit vectors for \(\vec{a}\): \[ \vec{a} = \frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k}) \quad \text{or} \quad \vec{a} = -\frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k}) \] However, we are looking for the positive scalar, so: \[ \vec{a} = \frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k}) \] ### Conclusion Thus, the correct answer is: \[ \vec{a} = \frac{1}{3}(2\hat{i} + 2\hat{j} - \hat{k}) \] This corresponds to option C.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the scalar product of vectors veca=2hati-hatj+2hatk and vecb=hati-3hatj-5hatk

If veca=hati+hatj, vecb=hatj+hatk, vec c hatk+hati , a unit vector parallel to veca+vecb+vecc .

vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk) , find the scalar product vecA and vecB

Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector perpendicular to veca and coplanar with veca and vecb , then it is given by

Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

Find the scalar and vector products of two vectors veca=(2hati-3hatj+4hatk) and vecb(hati-2hatj+3hatk) .

Let veca=hatj-hatk and vecc=hati-hatj-hatk . Then the vector vecb satisfying vecaxxvecb+vecc=0 and veca.vecb=3 is (A) -hati+hatj-2hatk (B) 2hati-hatj+2hatk (C) hati-hatj-hatk (D) hati+hatj-2hatk

Let veca=2hati=hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the pland of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vecb=-veci+4vecj+6veck, vecc=2veci-7vecj-10veck. If veca be a unit...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |