Home
Class 12
MATHS
Let veca, vecb, vecc be three vectors su...

Let `veca, vecb, vecc` be three vectors such that `[(veca, vecb, vecc)]=2`. If `vecr=l(vecbxxvecc)+m(veccxxveca)+n(vecaxxvecb)` be perpendicular to `veca+vecb+vecc` , then the value of `l+m+n` is

A

2

B

1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given vectors and their relationships. ### Step 1: Understand the Given Information We have three vectors \(\vec{a}, \vec{b}, \vec{c}\) such that the scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = 2\). This means that the volume of the parallelepiped formed by these vectors is 2. ### Step 2: Define the Vector \(\vec{r}\) We are given that: \[ \vec{r} = l(\vec{b} \times \vec{c}) + m(\vec{c} \times \vec{a}) + n(\vec{a} \times \vec{b}) \] This vector \(\vec{r}\) is perpendicular to the vector sum \(\vec{a} + \vec{b} + \vec{c}\). ### Step 3: Use the Perpendicularity Condition Since \(\vec{r}\) is perpendicular to \(\vec{a} + \vec{b} + \vec{c}\), we can express this condition mathematically: \[ \vec{r} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 4: Expand the Dot Product Substituting \(\vec{r}\) into the dot product gives: \[ \left(l(\vec{b} \times \vec{c}) + m(\vec{c} \times \vec{a}) + n(\vec{a} \times \vec{b})\right) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This expands to: \[ l(\vec{b} \times \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) + m(\vec{c} \times \vec{a}) \cdot (\vec{a} + \vec{b} + \vec{c}) + n(\vec{a} \times \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 5: Calculate Each Dot Product Using the properties of the scalar triple product, we know: 1. \((\vec{b} \times \vec{c}) \cdot \vec{a} = [\vec{a}, \vec{b}, \vec{c}] = 2\) 2. \((\vec{c} \times \vec{a}) \cdot \vec{b} = [\vec{b}, \vec{c}, \vec{a}] = 2\) 3. \((\vec{a} \times \vec{b}) \cdot \vec{c} = [\vec{c}, \vec{a}, \vec{b}] = 2\) Thus, we can write: - \((\vec{b} \times \vec{c}) \cdot \vec{b} = 0\) and \((\vec{b} \times \vec{c}) \cdot \vec{c} = 0\) - Similarly, the other terms will yield zero when dotted with their respective vectors. ### Step 6: Combine the Results This leads to: \[ l \cdot 2 + m \cdot 2 + n \cdot 2 = 0 \] or simplifying: \[ 2(l + m + n) = 0 \] Thus, we find: \[ l + m + n = 0 \] ### Conclusion The value of \(l + m + n\) is \(0\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

If veca, vecb, vecc are non coplanar non null vectors such that [(veca, vecb, vecc)]=2 then {[(vecaxxvecb, vecbxxvecc, veccxxveca)]}^(2)=

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

The vector (veca.vecb)vecc-(veca.vecc)vecb is perpendicular to

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca, vecb, vecc be three vectors such that [(veca, vecb, vecc)]=2...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |