Home
Class 12
MATHS
If a,b and c are three mutually perpendi...

If a,b and c are three mutually perpendicular vectors, then the projection of the vectors
`l(a)/(|a|)+m(b)/(|b|)+n((axxb))/(|axxb|)` along the angle bisector of the vectors a and b is

A

`(l+m)/(sqrt(2))`

B

`sqrt(l^(2)+m^(2)+n^(2))`

C

`(sqrt(l^(2)+m^(2)))/(sqrt(l^(2)+m^(2)+b^(2)))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the projection of the vector \( \frac{l \mathbf{a}}{|\mathbf{a}|} + \frac{m \mathbf{b}}{|\mathbf{b}|} + \frac{n (\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|} \) along the angle bisector of the vectors \( \mathbf{a} \) and \( \mathbf{b} \). ### Step 1: Determine the Angle Bisector The angle bisector \( \mathbf{y} \) of the vectors \( \mathbf{a} \) and \( \mathbf{b} \) can be expressed as: \[ \mathbf{y} = \frac{\lambda \mathbf{a}}{|\mathbf{a}|} + \frac{\mathbf{b}}{|\mathbf{b}|} \] where \( \lambda \) is a scalar that can be determined based on the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \). ### Step 2: Define the Vector to be Projected Let \( \mathbf{x} = \frac{l \mathbf{a}}{|\mathbf{a}|} + \frac{m \mathbf{b}}{|\mathbf{b}|} + \frac{n (\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|} \). ### Step 3: Calculate the Dot Product \( \mathbf{x} \cdot \mathbf{y} \) To find the projection of \( \mathbf{x} \) onto \( \mathbf{y} \), we first need to calculate the dot product \( \mathbf{x} \cdot \mathbf{y} \): \[ \mathbf{x} \cdot \mathbf{y} = \left( \frac{l \mathbf{a}}{|\mathbf{a}|} + \frac{m \mathbf{b}}{|\mathbf{b}|} + \frac{n (\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|} \right) \cdot \left( \frac{\lambda \mathbf{a}}{|\mathbf{a}|} + \frac{\mathbf{b}}{|\mathbf{b}|} \right) \] Expanding this gives: \[ \mathbf{x} \cdot \mathbf{y} = \frac{l \lambda |\mathbf{a}|^2}{|\mathbf{a}|^2} + \frac{m}{|\mathbf{b}|} + \text{other terms} \] Since \( \mathbf{a} \) and \( \mathbf{b} \) are mutually perpendicular, the cross product term will contribute zero. ### Step 4: Simplifying the Dot Product The dot product simplifies to: \[ \mathbf{x} \cdot \mathbf{y} = l \lambda + m \] ### Step 5: Calculate the Magnitude of \( \mathbf{y} \) Next, we calculate the magnitude of \( \mathbf{y} \): \[ |\mathbf{y}| = \sqrt{\left( \frac{\lambda}{|\mathbf{a}|} \right)^2 + \left( \frac{1}{|\mathbf{b}|} \right)^2} \] This can be simplified to: \[ |\mathbf{y}| = \lambda \sqrt{2} \] ### Step 6: Calculate the Projection The scalar projection of \( \mathbf{x} \) onto \( \mathbf{y} \) is given by: \[ \text{Projection} = \frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{y}|} \] Substituting the values we found: \[ \text{Projection} = \frac{l \lambda + m}{\lambda \sqrt{2}} = \frac{l + m}{\sqrt{2}} \] ### Final Result Thus, the projection of the vector \( \mathbf{x} \) along the angle bisector of vectors \( \mathbf{a} \) and \( \mathbf{b} \) is: \[ \frac{l + m}{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The vectors a,b and a+b are

If vec a\ a n d\ vec b are mutually perpendicular unit vectors, write the value of | vec a+ vec b|dot

The angle between vectors (AxxB)and(BxxA) is

The angle between vectors (AxxB)and(BxxA) is

The angle between vectors (AxxB)and(BxxA) is

If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit vectors, then prove that | vec a+ vec b+ vec c|=sqrt(3)

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

If vec a , vec ba n d vec c are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is a. vec a+ vec b+ vec c b. vec a/(| vec a|)+ vec b/(| vec b|)+ vec c/(| vec c|) c. vec a/(| vec a|^2)+ vec b/(| vec b|^2)+ vec c/(| vec c|^2) d. | vec a| vec a-| vec b| vec b+| vec c| vec c

If a, b and c are any three non-zero vectors, then the component of atimes(btimesc) perpendicular to b is

If vec a\ a n d\ vec b\ a n d\ vec c are mutually perpendicular unit vectors, write the value of | vec a+ vec b+ vec c|dot

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a,b and c are three mutually perpendicular vectors, then the projec...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |