Home
Class 12
MATHS
Let bar a,bar b,bar c be three non-copl...

Let `bar a,bar b,bar c` be three non-coplanar vectors and `bar d` be a non-zero vector, which is perpendicularto `bar a+bar b+bar c`. Now, if `bar d= (sin x)(bar a xx bar b) + (cos y)(bar b xx bar c) + 2(bar c xx bar a)` then minimum value of `x^2+y^2` is equal to

A

`pi^(2)`

B

`(pi^(2))/(2)`

C

`(pi^(2))/(4)`

D

`(5pi^(2))/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \( x^2 + y^2 \) given the conditions of the vectors. Let's break it down step by step. ### Step 1: Understanding the Problem We have three non-coplanar vectors \( \vec{a}, \vec{b}, \vec{c} \) and a vector \( \vec{d} \) that is perpendicular to \( \vec{a} + \vec{b} + \vec{c} \). The vector \( \vec{d} \) is expressed as: \[ \vec{d} = \sin x (\vec{a} \times \vec{b}) + \cos y (\vec{b} \times \vec{c}) + 2 (\vec{c} \times \vec{a}) \] ### Step 2: Setting Up the Perpendicular Condition Since \( \vec{d} \) is perpendicular to \( \vec{a} + \vec{b} + \vec{c} \), we can write: \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 3: Substituting \( \vec{d} \) Substituting the expression for \( \vec{d} \): \[ \left( \sin x (\vec{a} \times \vec{b}) + \cos y (\vec{b} \times \vec{c}) + 2 (\vec{c} \times \vec{a}) \right) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] ### Step 4: Expanding the Dot Product Using the properties of the dot product and cross product, we can evaluate each term: 1. \( \sin x (\vec{a} \times \vec{b}) \cdot \vec{a} = 0 \) (since \( \vec{a} \times \vec{b} \) is perpendicular to \( \vec{a} \)) 2. \( \sin x (\vec{a} \times \vec{b}) \cdot \vec{b} = 0 \) (since \( \vec{a} \times \vec{b} \) is perpendicular to \( \vec{b} \)) 3. \( \sin x (\vec{a} \times \vec{b}) \cdot \vec{c} = \sin x (\vec{a} \vec{b} \vec{c}) \) Similarly for the other terms: - \( \cos y (\vec{b} \times \vec{c}) \cdot \vec{a} = \cos y (\vec{b} \vec{c} \vec{a}) \) - \( 2 (\vec{c} \times \vec{a}) \cdot \vec{b} = 2 (\vec{c} \vec{a} \vec{b}) \) ### Step 5: Combining the Results Combining these results gives us: \[ \sin x (\vec{a} \vec{b} \vec{c}) + \cos y (\vec{b} \vec{c} \vec{a}) + 2 (\vec{c} \vec{a} \vec{b}) = 0 \] ### Step 6: Solving for \( \sin x + \cos y \) Rearranging gives: \[ \sin x + \cos y + 2 = 0 \] Thus, \[ \sin x + \cos y = -2 \] ### Step 7: Finding Minimum Values The maximum value of \( \sin x \) is 1 and the maximum value of \( \cos y \) is also 1. Therefore, the only way for their sum to be -2 is if both are at their minimum: - \( \sin x = -1 \) when \( x = -\frac{\pi}{2} \) - \( \cos y = -1 \) when \( y = \pi \) ### Step 8: Calculating \( x^2 + y^2 \) Now we calculate: \[ x^2 + y^2 = \left(-\frac{\pi}{2}\right)^2 + (\pi)^2 = \frac{\pi^2}{4} + \pi^2 = \frac{\pi^2}{4} + \frac{4\pi^2}{4} = \frac{5\pi^2}{4} \] ### Final Answer Thus, the minimum value of \( x^2 + y^2 \) is: \[ \frac{5\pi^2}{4} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The value of 2.bar(357) , is

Given four non zero vectors bar a,bar b,bar c and bar d . The vectors bar a,bar b and bar c are coplanar but not collinear pair by pairand vector bar d is not coplanar with vectors bar a,bar b and bar c and hat (bar a bar b) = hat (bar b bar c) = pi/3,(bar d bar b)=beta ,If (bar d bar c)=cos^-1(mcos beta+ncos alpha) then m-n is :

In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar u)/(|baru|) where |bar u| != |bar |v| then

Let a ,b and c be any three nonzero complex number. If |z|=1 and' z ' satisfies the equation a z^2+b z+c=0, prove that a .bar a = c .bar c and |a||b|= sqrt(a c( bar b )^2)

If z be a non-zero complex number, show that (bar(z^(-1)))= (bar(z))^(-1)

In the Boolean algebra bar(A).bar(B) equals

Let vec a be vector parallel to line of intersection of planes P_1 and P_2 through origin. If P_1 is parallel to the vectors 2 bar j + 3 bar k and 4 bar j - 3 bar k and P_2 is parallel to bar j - bar k and 3 bar I + 3 bar j , then the angle between vec a and 2 bar i +bar j - 2 bar k is :

In Boolena algebra bar1+ bar1 equals

If A and B are two sets, then Ann(bar(AuuB)) is equal to :

IF bar(a),bar(b),bar(c ) are vectors from the origin to three points A,B,C show that bara times barb +barb times barc+barc times bara is perpendicular to the plane ABC.

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let bar a,bar b,bar c be three non-coplanar vectors and bar d be a no...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |