Home
Class 12
MATHS
Let vec a, vec b, vec c are three vector...

Let `vec a, vec b, vec c` are three vectors such that `veca .veca=vecb . vecb = vecc . vecc = 3 and |veca-vecb|^2+|vecb-vecc|^2+|vecc-veca|^2=27,` then

A

a,b and c are necessarily coplanar

B

a,b and c represent sides of a triangle in magnitude and direction

C

`a*b+b*c+c*a` has the least value `-9//2`

D

a,b and c represent orthogonal triad of vectors

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we start with the given information about the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): 1. **Given Conditions**: - \(\vec{a} \cdot \vec{a} = \vec{b} \cdot \vec{b} = \vec{c} \cdot \vec{c} = 3\) - \(|\vec{a} - \vec{b}|^2 + |\vec{b} - \vec{c}|^2 + |\vec{c} - \vec{a}|^2 = 27\) 2. **Using the Dot Product**: The expression \(|\vec{x} - \vec{y}|^2\) can be expanded using the dot product: \[ |\vec{x} - \vec{y}|^2 = (\vec{x} - \vec{y}) \cdot (\vec{x} - \vec{y}) = \vec{x} \cdot \vec{x} - 2\vec{x} \cdot \vec{y} + \vec{y} \cdot \vec{y} \] 3. **Expanding Each Term**: - For \(|\vec{a} - \vec{b}|^2\): \[ |\vec{a} - \vec{b}|^2 = \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} = 3 - 2\vec{a} \cdot \vec{b} + 3 = 6 - 2\vec{a} \cdot \vec{b} \] - For \(|\vec{b} - \vec{c}|^2\): \[ |\vec{b} - \vec{c}|^2 = \vec{b} \cdot \vec{b} - 2\vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c} = 3 - 2\vec{b} \cdot \vec{c} + 3 = 6 - 2\vec{b} \cdot \vec{c} \] - For \(|\vec{c} - \vec{a}|^2\): \[ |\vec{c} - \vec{a}|^2 = \vec{c} \cdot \vec{c} - 2\vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{a} = 3 - 2\vec{c} \cdot \vec{a} + 3 = 6 - 2\vec{c} \cdot \vec{a} \] 4. **Combining the Expansions**: Now, we combine all the expanded terms: \[ (6 - 2\vec{a} \cdot \vec{b}) + (6 - 2\vec{b} \cdot \vec{c}) + (6 - 2\vec{c} \cdot \vec{a}) = 27 \] Simplifying this gives: \[ 18 - 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 27 \] 5. **Solving for the Dot Products**: Rearranging the equation: \[ -2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 27 - 18 \] \[ -2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 9 \] Dividing by -2: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{9}{2} \] 6. **Conclusion**: The least value of \(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\) is \(-\frac{9}{2}\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc + vecc.veca is equal to

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

Let veca , vecb and vecc be three non-zero vectors such that veca + vecb + vecc = vec0 and lambda vecb xx veca + vecbxxvecc + vecc xx veca = vec0 then find the value of lambda .

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vec a, vec b, vec c are three vectors such that veca .veca=vecb . ...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |