Home
Class 12
MATHS
If vec a is perpendicular to vec b and...

If ` vec a` is perpendicular to ` vec b` and ` vec r` is non-zero vector such that `p vec r+( vec rdot vec a) vec b= vec c ,` then ` vec r=` ` vec c/p-(( vec adot vec c) vec b)/(p^2)` (b) ` vec a/p-(( vec cdot vec b) vec a)/(p^2)` ` vec a/p-(( vec adot vec b) vec c)/(p^2)` (d) ` vec c/(p^2)-(( vec adot vec c) vec b)/p`

A

`[rac]=0`

B

`p^(2)r=pa-(c*a)b`

C

`p^(2)r=pb-(a*b)c`

D

`p^(2)r=pc-(b*c)a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ p \vec{r} + (\vec{r} \cdot \vec{a}) \vec{b} = \vec{c} \] ### Step 1: Understand the Perpendicularity Condition Since \(\vec{a}\) is perpendicular to \(\vec{b}\), we know that: \[ \vec{a} \cdot \vec{b} = 0 \] ### Step 2: Take the Dot Product with \(\vec{a}\) We take the dot product of both sides of the equation with \(\vec{a}\): \[ \vec{a} \cdot (p \vec{r} + (\vec{r} \cdot \vec{a}) \vec{b}) = \vec{a} \cdot \vec{c} \] ### Step 3: Simplify the Left Side Using the distributive property of the dot product, we have: \[ p (\vec{a} \cdot \vec{r}) + (\vec{r} \cdot \vec{a})(\vec{a} \cdot \vec{b}) = \vec{a} \cdot \vec{c} \] Since \(\vec{a} \cdot \vec{b} = 0\), the second term becomes zero: \[ p (\vec{a} \cdot \vec{r}) = \vec{a} \cdot \vec{c} \] ### Step 4: Solve for \(\vec{r} \cdot \vec{a}\) From the equation above, we can express \(\vec{r} \cdot \vec{a}\): \[ \vec{r} \cdot \vec{a} = \frac{\vec{a} \cdot \vec{c}}{p} \] ### Step 5: Substitute Back into the Original Equation Now substitute \(\vec{r} \cdot \vec{a}\) back into the original equation: \[ p \vec{r} + \left(\frac{\vec{a} \cdot \vec{c}}{p}\right) \vec{b} = \vec{c} \] ### Step 6: Isolate \(\vec{r}\) Rearranging gives us: \[ p \vec{r} = \vec{c} - \left(\frac{\vec{a} \cdot \vec{c}}{p}\right) \vec{b} \] ### Step 7: Solve for \(\vec{r}\) Now divide both sides by \(p\): \[ \vec{r} = \frac{\vec{c}}{p} - \frac{\vec{a} \cdot \vec{c}}{p^2} \vec{b} \] ### Final Result Thus, the expression for \(\vec{r}\) is: \[ \vec{r} = \frac{\vec{c}}{p} - \frac{(\vec{a} \cdot \vec{c})}{p^2} \vec{b} \] ### Conclusion The correct option is: **(a)** \( \vec{r} = \frac{\vec{c}}{p} - \frac{(\vec{a} \cdot \vec{c}) \vec{b}}{p^2} \)
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The orthogonal projection of vec a\ on\ vec b is a. (( vec adot vec b) vec a)/(|"a"|^2) b. (( vec adot vec b) vec b)/(| vec b|^2) c. vec a/(| vec a|) d. vec b/(| vec b|)

For any three vectors vec a , vec b , vec c , prove that | vec a+ vec b+ vec c|^2=| vec a|^2+| vec b|^2+| vec c|^2+2( vec adot vec b+ vec bdot vec c+ vec cdot vec a)

If vec adot vec b=betaa n d vec axx vec b= vec c ,t h e n vec b is ((beta vec a- vec axx vec c))/(| vec a|^2) b. ((beta vec a+ vec axx vec c))/(| vec a|^2) c. ((beta vec c- vec axx vec c))/(| vec a|^2) d. ((beta vec a+ vec axx vec c))/(| vec a|^2)

If vec a ,\ vec b ,\ vec c are unit vectors such that vec a+ vec b+ vec c= vec0 find the value of vec adot vec b+ vec bdot vec c+ vec cdot vec adot'

If vec a ,\ vec b ,\ vec c are three vectors such that vec adot vec b= vec adot vec c then show that vec a=0\ or ,\ vec b=c\ or\ vec a_|_( vec b- vec c)dot

If vec a , vec b and vec c are three non-zero, non coplanar vector vec b_1= vec b-( vec bdot vec a)/(| vec a|^2) vec a , vec c_1= vec c-( vec cdot vec a)/(| vec a|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , , c_2= vec c-( vec cdot vec a)/(| vec a|^2) vec a-( vec bdot vec c)/(| vec b_1|^2) , b_1, vec c_3= vec c-( vec cdot vec a)/(| vec c|^2) vec a+( vec bdot vec c)/(| vec c|^2) vec b_1 , vec c_4= vec c-( vec cdot vec a)/(| vec c|^2) vec a=( vec bdot vec c)/(| vec b|^2) vec b_1 then the set of orthogonal vectors is ( vec a , vec b_1, vec c_3) b. ( vec a , vec b_1, vec c_2) c. ( vec a , vec b_1, vec c_1) d. ( vec a , vec b_2, vec c_2)

The value of (axxb)^2 is | vec a|^2+| vec b|^2-( vec adot vec b)^2 b. | vec a|^2| vec b|^2-( vec adot vec b)^2 c. | vec a|^2+| vec b|^2-2( vec adot vec b)^2 d. | vec a|^2+| vec b|^2- vec adot vec b

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar vectors, then find the value of ( vec adot( vec bxx vec c))/( vec b dot( vec cxx vec a))+( vec b dot( vec cxx vec a))/( vec c dot( vec axx vec b))+( vec c dot( vec bxx vec a))/( vec a dot( vec bxx vec c))dot

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If vec a is perpendicular to vec b and vec r is non-zero vector suc...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |