Home
Class 12
MATHS
If a=hati+hatj+hatk and b=hati-hatj, the...

If `a=hati+hatj+hatk and b=hati-hatj`, then vectors `((a*hati)hati+(a*hatj)hatj+(a*hatk)hatk),{(b*hati)hati+(bhatj)hatj+(b*hatk)hatk} and( hati+hatj-2hatk)`

A

are mutually perpendicular

B

are coplanar

C

form a parallepiped of volume 6 units

D

form a parallelopiped of volume 3 units

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product of the three vectors defined in the question. Let's break down the solution step by step. ### Given: 1. **Vector a**: \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \) 2. **Vector b**: \( \mathbf{b} = \hat{i} - \hat{j} \) ### Step 1: Calculate the first vector \( \mathbf{x} \) The first vector is defined as: \[ \mathbf{x} = (\mathbf{a} \cdot \hat{i}) \hat{i} + (\mathbf{a} \cdot \hat{j}) \hat{j} + (\mathbf{a} \cdot \hat{k}) \hat{k} \] Calculating the dot products: - \( \mathbf{a} \cdot \hat{i} = 1 \) - \( \mathbf{a} \cdot \hat{j} = 1 \) - \( \mathbf{a} \cdot \hat{k} = 1 \) Thus, we have: \[ \mathbf{x} = 1 \hat{i} + 1 \hat{j} + 1 \hat{k} = \hat{i} + \hat{j} + \hat{k} \] ### Step 2: Calculate the second vector \( \mathbf{y} \) The second vector is defined as: \[ \mathbf{y} = (\mathbf{b} \cdot \hat{i}) \hat{i} + (\mathbf{b} \cdot \hat{j}) \hat{j} + (\mathbf{b} \cdot \hat{k}) \hat{k} \] Calculating the dot products: - \( \mathbf{b} \cdot \hat{i} = 1 \) - \( \mathbf{b} \cdot \hat{j} = -1 \) - \( \mathbf{b} \cdot \hat{k} = 0 \) Thus, we have: \[ \mathbf{y} = 1 \hat{i} - 1 \hat{j} + 0 \hat{k} = \hat{i} - \hat{j} \] ### Step 3: Define the third vector \( \mathbf{z} \) The third vector is given as: \[ \mathbf{z} = \hat{i} + \hat{j} - 2 \hat{k} \] ### Step 4: Calculate the scalar triple product \( \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) \) The scalar triple product can be calculated using the determinant of the matrix formed by the components of the vectors: \[ \text{Volume} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & -2 \end{vmatrix} \] ### Step 5: Calculate the determinant Expanding the determinant: \[ = 1 \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} + 1 \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} = (-1)(-2) - (0)(1) = 2 \) 2. \( \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} = (1)(-2) - (0)(1) = -2 \) 3. \( \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-1)(1) = 1 + 1 = 2 \) Putting it all together: \[ = 1(2) - 1(-2) + 1(2) = 2 + 2 + 2 = 6 \] ### Final Result The volume of the parallel pipette formed by the vectors is \( 6 \) cubic units. ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

(a*hati)hati+(a*hatj)hatj+(a*hatk)hatk is equal to

If a=hati+hatj+hatk,b=hati+hatj-hatk , then vectors perpendicular to a and b is/are

Vectors perpendicular to hati-hatj-hatk and in the plane of hati+hatj+hatk and -hati+hatj+hatk are (A) hati+hatk (B) 2hati+hatj+hatk (C) 3hati+2hatj+hatk (D) -4hati-2hatj-2hatk

Find the direction cosines of the resultant of the vectors (hati+hatj+hatk),(-hati+hatj+hatk),(hati-hatj+hatk) and (hati+hatj-hatk) .

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is (a) (2hati - 6hatj + hatk)/sqrt41 (b) (2hati-3hatj)/sqrt13 (c) (3 hatj -hatk)/sqrt10 (d) (4hati + 3hatj - 3hatk)/sqrt34

The value of hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.( hati xx hatj) is

If veca=(hati+hatj+hatk), and veca.vecb=1 and vecaxxvecb = -(hati-hatk) then vecb is (A) hati-hatj+hatk (B) 2hatj-hatk (C) hatj (D) 2hati

If veca = (hati + hatj +hatk), veca. vecb= 1 and vecaxxvecb = hatj -hatk , " then " vecb is (a) hati - hatj + hatk (b) 2hati - hatk (c) hati (d) 2hati

The position vector of the pont where the line vecr=hati-j+hatk+t(hati+hatj-hatk) meets plane vecr.(hati+hatj+hatk)=5 is (A) 5hati+hatj-hatk (B) 5hati+3hatj-3hatk (C) 5hati+hatj+hatk (D) 4hati+2hatj-2hatk

The vectors which is/are coplanar with vectors hati+hatj+2hatk and hati+2hatj+hatk and perpendicular to the vector hati+hatj+hatk is /are (A) hatj-hatk (B) -hati+hatj (C) hati-hatj (D) -hatj+hatk

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If a=hati+hatj+hatk and b=hati-hatj, then vectors ((a*hati)hati+(a*hat...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |