Home
Class 12
MATHS
The volume of the parallelepiped whose c...

The volume of the parallelepiped whose coterminous edges are represented by the vectors `2vecb xx vecc, 3vecc xx veca` and `4veca xx vecb` where
`vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk`,
`vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk`
is 18 cubic units, then the values of `theta`, in the interval `(0,pi/2)`, is/are

A

`pi/9`

B

`2pi/9`

C

`pi/3`

D

`4pi/9`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \theta \) in the interval \( (0, \frac{\pi}{2}) \) such that the volume of the parallelepiped formed by the vectors \( 2\vec{b} \times \vec{c}, 3\vec{c} \times \vec{a}, \) and \( 4\vec{a} \times \vec{b} \) is 18 cubic units, we can follow these steps: ### Step 1: Understand the Volume of the Parallelepiped The volume \( V \) of a parallelepiped defined by three vectors \( \vec{u}, \vec{v}, \vec{w} \) can be calculated using the scalar triple product: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] In our case, the vectors are \( 2\vec{b} \times \vec{c}, 3\vec{c} \times \vec{a}, \) and \( 4\vec{a} \times \vec{b} \). ### Step 2: Set Up the Volume Equation The volume can be expressed as: \[ V = |2\vec{b} \times \vec{c} \cdot (3\vec{c} \times \vec{a}) \times (4\vec{a} \times \vec{b})| \] This can be simplified to: \[ V = 24 |\det(\vec{b}, \vec{c}, \vec{a})| \] Given that the volume is 18 cubic units, we have: \[ 24 |\det(\vec{b}, \vec{c}, \vec{a})| = 18 \] Thus, \[ |\det(\vec{b}, \vec{c}, \vec{a})| = \frac{18}{24} = \frac{3}{4} \] ### Step 3: Express the Vectors The vectors are given as: \[ \vec{b} = \sin\left(\theta + \frac{2\pi}{3}\right) \hat{i} + \cos\left(\theta + \frac{2\pi}{3}\right) \hat{j} + \sin\left(2\theta + \frac{4\pi}{3}\right) \hat{k} \] \[ \vec{c} = \sin\left(\theta - \frac{2\pi}{3}\right) \hat{i} + \cos\left(\theta - \frac{2\pi}{3}\right) \hat{j} + \sin\left(2\theta - \frac{4\pi}{3}\right) \hat{k} \] \[ \vec{a} = \text{(not provided, assume it is defined)} \] ### Step 4: Calculate the Determinant To find the determinant \( \det(\vec{b}, \vec{c}, \vec{a}) \), we can set up the matrix: \[ \begin{vmatrix} \sin\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \sin\left(2\theta + \frac{4\pi}{3}\right) \\ \sin\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{2\pi}{3}\right) & \sin\left(2\theta - \frac{4\pi}{3}\right) \\ \text{(components of } \vec{a} \text{)} \end{vmatrix} \] ### Step 5: Solve for \( \theta \) After calculating the determinant, we set it equal to \( \frac{3}{4} \) and solve for \( \theta \). The determinant will involve trigonometric identities and simplifications. ### Step 6: Find Possible Values of \( \theta \) From the determinant, we can derive that: \[ \cos(3\theta) = \pm \frac{1}{2} \] This leads to: \[ 3\theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \] Thus, \[ \theta = \frac{\pi}{9}, \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{5\pi}{9} \] ### Step 7: Select Values in the Interval \( (0, \frac{\pi}{2}) \) We only consider values of \( \theta \) in the interval \( (0, \frac{\pi}{2}) \): - \( \frac{\pi}{9} \) - \( \frac{2\pi}{9} \) - \( \frac{4\pi}{9} \) Thus, the final values of \( \theta \) are: \[ \theta = \frac{\pi}{9}, \frac{2\pi}{9}, \frac{4\pi}{9} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where veca=(1+sintheta)hati+costhetahatj+sin2thetahatk , vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

Prove that tan(theta+(pi)/(6))+cot(theta-(pi)/(6))=(1)/(sin2theta-sin.(pi)/(3))

Minimum value of 3 sin theta+4 cos theta in the interval [0, (pi)/(2)] is :

If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta . Find the value of |(b)/(a)| .

Find the volume of a parallelopiped whose edges are represented by the vectors: veca =2hati-3hatj-4hatk, vecb=hati+2hatj-2hatk, and vecc=3hati+hatj+2hatk .

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Solve: sin2theta=sin((2pi)/(3)-theta)

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The volume of the parallelepiped whose coterminous edges are represent...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |