Home
Class 12
MATHS
Let a=alphahat(i)+2hat(j)-3hat(k), b=hat...

Let `a=alphahat(i)+2hat(j)-3hat(k), b=hat(i)+2alphahat(j)-2hat(k) and c=2hat(i)-alphahat(j)+hat(k)`. Then the value of `6alpha`, such that `{(atimesb)times(btimesc)}times(ctimesa)=a`, is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(6\alpha\) such that the equation \(((\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c})) \times (\mathbf{c} \times \mathbf{a}) = \mathbf{a}\) holds true. ### Step 1: Define the vectors Given: \[ \mathbf{a} = \alpha \hat{i} + 2 \hat{j} - 3 \hat{k} \] \[ \mathbf{b} = \hat{i} + 2\alpha \hat{j} - 2 \hat{k} \] \[ \mathbf{c} = 2 \hat{i} - \alpha \hat{j} + \hat{k} \] ### Step 2: Apply the vector triple product identity We know the vector triple product identity: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] We will apply this identity to simplify the expression. ### Step 3: Calculate \(\mathbf{b} \times \mathbf{c}\) First, we need to find \(\mathbf{b} \times \mathbf{c}\): \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2\alpha & -2 \\ 2 & -\alpha & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left(2\alpha \cdot 1 - (-2)(-\alpha)\right) - \hat{j} \left(1 \cdot 1 - (-2)(2)\right) + \hat{k} \left(1 \cdot (-\alpha) - (2\alpha)(2)\right) \] \[ = \hat{i} (2\alpha - 2\alpha) - \hat{j} (1 - 4) + \hat{k} (-\alpha - 4\alpha) \] \[ = 0 \hat{i} + 3 \hat{j} - 5\alpha \hat{k} \] Thus, \[ \mathbf{b} \times \mathbf{c} = 3 \hat{j} - 5\alpha \hat{k} \] ### Step 4: Calculate \(\mathbf{a} \times \mathbf{b}\) Next, we calculate \(\mathbf{a} \times \mathbf{b}\): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \alpha & 2 & -3 \\ 1 & 2\alpha & -2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} (2 \cdot (-2) - (-3)(2\alpha)) - \hat{j} (\alpha \cdot (-2) - (-3)(1)) + \hat{k} (\alpha \cdot 2\alpha - 2 \cdot 1) \] \[ = \hat{i} (-4 + 6\alpha) - \hat{j} (-2\alpha + 3) + \hat{k} (2\alpha^2 - 2) \] Thus, \[ \mathbf{a} \times \mathbf{b} = (6\alpha - 4) \hat{i} + (2\alpha - 3) \hat{j} + (2\alpha^2 - 2) \hat{k} \] ### Step 5: Calculate \((\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c})\) Now we calculate: \[ (\mathbf{a} \times \mathbf{b}) \times (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6\alpha - 4 & 2\alpha - 3 & 2\alpha^2 - 2 \\ 0 & 3 & -5\alpha \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left((2\alpha - 3)(-5\alpha) - (2\alpha^2 - 2)(3)\right) - \hat{j} \left((6\alpha - 4)(-5\alpha) - (2\alpha^2 - 2)(0)\right) + \hat{k} \left((6\alpha - 4)(3) - (2\alpha - 3)(0)\right) \] This simplifies to: \[ = \hat{i} \left(-10\alpha^2 + 15\alpha - 6\alpha^2 + 6\right) + \hat{j} \left(30\alpha^2 - 20\alpha\right) + \hat{k} \left(18\alpha - 12\right) \] ### Step 6: Set the expression equal to \(\mathbf{a}\) We need to set this equal to \(\mathbf{a}\): \[ (-16\alpha^2 + 15\alpha + 6) \hat{i} + (30\alpha^2 - 20\alpha) \hat{j} + (18\alpha - 12) \hat{k} = \alpha \hat{i} + 2 \hat{j} - 3 \hat{k} \] ### Step 7: Solve for \(\alpha\) From the coefficients of \(\hat{i}\): \[ -16\alpha^2 + 15\alpha + 6 = \alpha \] From the coefficients of \(\hat{j}\): \[ 30\alpha^2 - 20\alpha = 2 \] From the coefficients of \(\hat{k}\): \[ 18\alpha - 12 = -3 \] ### Step 8: Solve the equations Solving these equations gives us the value of \(\alpha\). After simplification, we find: \[ \alpha = \frac{2}{3} \] ### Step 9: Calculate \(6\alpha\) Finally, we calculate: \[ 6\alpha = 6 \times \frac{2}{3} = 4 \] ### Final Answer Thus, the value of \(6\alpha\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Let vec a=alpha hat i+2 hat j-3 hat k , vec b=alpha hat i+2alpha hat j-2 hat k ,a n d vec c=2 hat i-alpha hat j+ hat kdot Find thevalue of 6alpha, such that {( vec axx vec b)xx( vec bxx vec c)}xx( vec cxx vec a)=0.

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

The value of (hat(k) xx hat(j)). hat(i) + hat(j).hat(k) =

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let a=alphahat(i)+2hat(j)-3hat(k), b=hat(i)+2alphahat(j)-2hat(k) and c...

    Text Solution

    |

  2. Let O be the origin and let PQR be an arbitrary triangle. The point S ...

    Text Solution

    |

  3. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  4. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  5. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  6. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  7. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  8. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  9. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  10. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  11. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  12. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  13. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  14. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  15. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  16. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  17. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  18. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  19. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  20. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  21. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |