Home
Class 12
MATHS
Find the altitude of a parallelopiped wh...

Find the altitude of a parallelopiped whose three conterminous edges are verctors `A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k)` with A and B as the sides of the base of the parallelopiped.

Text Solution

AI Generated Solution

The correct Answer is:
To find the altitude of a parallelepiped whose three conterminous edges are given by the vectors \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \), \( \mathbf{B} = 2\hat{i} + 4\hat{j} - \hat{k} \), and \( \mathbf{C} = \hat{i} + \hat{j} + 3\hat{k} \), we will follow these steps: ### Step 1: Calculate the Volume of the Parallelepiped The volume \( V \) of the parallelepiped can be calculated using the scalar triple product of the vectors \( \mathbf{A} \), \( \mathbf{B} \), and \( \mathbf{C} \): \[ V = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \] First, we need to calculate the cross product \( \mathbf{B} \times \mathbf{C} \). ### Step 2: Compute the Cross Product \( \mathbf{B} \times \mathbf{C} \) Using the determinant form: \[ \mathbf{B} \times \mathbf{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} = (4 \cdot 3) - (-1 \cdot 1) = 12 + 1 = 13 \) 2. \( \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} = (2 \cdot 3) - (-1 \cdot 1) = 6 + 1 = 7 \) 3. \( \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} = (2 \cdot 1) - (4 \cdot 1) = 2 - 4 = -2 \) Putting it all together: \[ \mathbf{B} \times \mathbf{C} = 13\hat{i} - 7\hat{j} - 2\hat{k} \] ### Step 3: Calculate the Dot Product \( \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \) Now, we compute the dot product: \[ V = \mathbf{A} \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) = (1)(13) + (1)(-7) + (1)(-2) = 13 - 7 - 2 = 4 \] ### Step 4: Calculate the Area of the Base The area \( A \) of the base of the parallelepiped, which is formed by vectors \( \mathbf{A} \) and \( \mathbf{B} \), is given by the magnitude of the cross product \( \mathbf{A} \times \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} = (1)(-1) - (1)(4) = -1 - 4 = -5 \) 2. \( \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (1)(2) = -1 - 2 = -3 \) 3. \( \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} = (1)(4) - (1)(2) = 4 - 2 = 2 \) Putting it all together: \[ \mathbf{A} \times \mathbf{B} = -5\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 5: Calculate the Magnitude of the Cross Product Now, we find the magnitude: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(-5)^2 + 3^2 + 2^2} = \sqrt{25 + 9 + 4} = \sqrt{38} \] ### Step 6: Calculate the Altitude The altitude \( h \) of the parallelepiped can be found using the formula: \[ h = \frac{V}{A} \] Substituting the values we found: \[ h = \frac{4}{\sqrt{38}} \] To rationalize the denominator: \[ h = \frac{4\sqrt{38}}{38} = \frac{2\sqrt{38}}{19} \] ### Final Answer The altitude of the parallelepiped is: \[ h = \frac{2\sqrt{38}}{19} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|18 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

The value ( in cubic units ) of the parallelopiped whose coterminus edges are given by the vectors vec(i)-vec(j)+hat(k),2hat(i)-4hat(j)+5hat(k) and 3 hat(i) -5 hat(j) + 2hat(k) is

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)