Home
Class 12
MATHS
Examine whether the vectors a=2hat(i)+3h...

Examine whether the vectors `a=2hat(i)+3hat(j)+2hat(k), b=hat(i)-hat(j)+2hat(k) and c=4hat(i)+2hat(j)+4hat(k)` form a left handed or a right handed system.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the vectors \( \mathbf{a} = 2\hat{i} + 3\hat{j} + 2\hat{k} \), \( \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k} \), and \( \mathbf{c} = 4\hat{i} + 2\hat{j} + 4\hat{k} \) form a left-handed or right-handed system, we will calculate the box product (scalar triple product) of these vectors. ### Step-by-step Solution: 1. **Identify the vectors**: - \( \mathbf{a} = 2\hat{i} + 3\hat{j} + 2\hat{k} \) - \( \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \mathbf{c} = 4\hat{i} + 2\hat{j} + 4\hat{k} \) 2. **Write the components of the vectors**: - For \( \mathbf{a} \), the components are \( a_1 = 2, a_2 = 3, a_3 = 2 \). - For \( \mathbf{b} \), the components are \( b_1 = 1, b_2 = -1, b_3 = 2 \). - For \( \mathbf{c} \), the components are \( c_1 = 4, c_2 = 2, c_3 = 4 \). 3. **Set up the determinant for the box product**: \[ \text{Box Product} = \begin{vmatrix} 2 & 3 & 2 \\ 1 & -1 & 2 \\ 4 & 2 & 4 \end{vmatrix} \] 4. **Calculate the determinant**: - Using the first row to expand the determinant: \[ = 2 \begin{vmatrix} -1 & 2 \\ 2 & 4 \end{vmatrix} - 3 \begin{vmatrix} 1 & 2 \\ 4 & 4 \end{vmatrix} + 2 \begin{vmatrix} 1 & -1 \\ 4 & 2 \end{vmatrix} \] 5. **Calculate the 2x2 determinants**: - For the first determinant: \[ \begin{vmatrix} -1 & 2 \\ 2 & 4 \end{vmatrix} = (-1)(4) - (2)(2) = -4 - 4 = -8 \] - For the second determinant: \[ \begin{vmatrix} 1 & 2 \\ 4 & 4 \end{vmatrix} = (1)(4) - (2)(4) = 4 - 8 = -4 \] - For the third determinant: \[ \begin{vmatrix} 1 & -1 \\ 4 & 2 \end{vmatrix} = (1)(2) - (-1)(4) = 2 + 4 = 6 \] 6. **Substituting back into the determinant**: \[ = 2(-8) - 3(-4) + 2(6) \] \[ = -16 + 12 + 12 \] \[ = -16 + 24 = 8 \] 7. **Conclusion**: - The box product is \( 8 \), which is positive. Therefore, the vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) form a right-handed system.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|18 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.