Home
Class 12
MATHS
If vec a , vec b ,a n d vec c are three...

If ` vec a , vec b ,a n d vec c` are three non-coplanar vectors, then find the value of `( vec adot( vec bxx vec c))/( vec b dot( vec cxx vec a))+( vec b dot( vec cxx vec a))/( vec c dot( vec axx vec b))+( vec c dot( vec bxx vec a))/( vec a dot( vec bxx vec c))dot`

Text Solution

Verified by Experts

The correct Answer is:
`1`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|18 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec a.vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec b.vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec c. vec d)/([ vec a vec b vec c])( vec axx vec b)

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If a ,\ b ,\ c are non coplanar vectors then ( vec adot( vec bxx vec c))/(( vec cxx vec a)dot vec b)+( vec bdot( vec axx vec c))/( vec cdot( vec axx vec b)) is equal to 2 b. "\ "0"\ " c. 1 d. none of these

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

For any three vectors a,b\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= a. 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0