Home
Class 12
MATHS
(r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))...

`(r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))^(2)` is equal to

A

`3r^(2)`

B

`r^(2)`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem `(r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))^(2)`, we will follow these steps: ### Step 1: Define the vector r Assume the vector \( \mathbf{r} \) can be expressed in terms of its components along the unit vectors \( \hat{i}, \hat{j}, \hat{k} \): \[ \mathbf{r} = x \hat{i} + y \hat{j} + z \hat{k} \] ### Step 2: Calculate \( \mathbf{r} \cdot \hat{i} \) To find \( \mathbf{r} \cdot \hat{i} \): \[ \mathbf{r} \cdot \hat{i} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{i} \] Using the dot product properties, we have: \[ \mathbf{r} \cdot \hat{i} = x (\hat{i} \cdot \hat{i}) + y (\hat{j} \cdot \hat{i}) + z (\hat{k} \cdot \hat{i}) = x \cdot 1 + y \cdot 0 + z \cdot 0 = x \] ### Step 3: Calculate \( \mathbf{r} \cdot \hat{j} \) Similarly, for \( \mathbf{r} \cdot \hat{j} \): \[ \mathbf{r} \cdot \hat{j} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{j} \] This gives us: \[ \mathbf{r} \cdot \hat{j} = x (\hat{i} \cdot \hat{j}) + y (\hat{j} \cdot \hat{j}) + z (\hat{k} \cdot \hat{j}) = x \cdot 0 + y \cdot 1 + z \cdot 0 = y \] ### Step 4: Calculate \( \mathbf{r} \cdot \hat{k} \) Now, for \( \mathbf{r} \cdot \hat{k} \): \[ \mathbf{r} \cdot \hat{k} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{k} \] This results in: \[ \mathbf{r} \cdot \hat{k} = x (\hat{i} \cdot \hat{k}) + y (\hat{j} \cdot \hat{k}) + z (\hat{k} \cdot \hat{k}) = x \cdot 0 + y \cdot 0 + z \cdot 1 = z \] ### Step 5: Calculate the squares Now we can find the squares of these dot products: \[ (\mathbf{r} \cdot \hat{i})^2 = x^2 \] \[ (\mathbf{r} \cdot \hat{j})^2 = y^2 \] \[ (\mathbf{r} \cdot \hat{k})^2 = z^2 \] ### Step 6: Add the squares Now, we add these results together: \[ (\mathbf{r} \cdot \hat{i})^2 + (\mathbf{r} \cdot \hat{j})^2 + (\mathbf{r} \cdot \hat{k})^2 = x^2 + y^2 + z^2 \] ### Step 7: Relate to the magnitude of r The expression \( x^2 + y^2 + z^2 \) is equal to the square of the magnitude of the vector \( \mathbf{r} \): \[ x^2 + y^2 + z^2 = |\mathbf{r}|^2 \] ### Conclusion Thus, we conclude that: \[ (\mathbf{r} \cdot \hat{i})^2 + (\mathbf{r} \cdot \hat{j})^2 + (\mathbf{r} \cdot \hat{k})^2 = |\mathbf{r}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Prove that lines vec( r)= (hat(i)+ hat(j) + hat(k))+ t(hat(i) - hat(j) + hat(k)) and vec(r ) = (3hat(i) - hat(k)) + s(4hat(j) - 16hat(k)) intersect. Also find the position vector of their point of intersection

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

If r=hat(i)+hat(j)+lambda(2hat(i)+hat(j)+4hat(k)) and r*(hat(i)+2hat(j)-hat(k)=3 are equations of a line and a plane respectively, then which of the following is incorrect?

Consider the following 3lines in space L_1:r=3hat(i)-hat(j)+hat(k)+lambda(2hat(i)+4hat(j)-hat(k)) L_2: r=hat(i)+hat(j)-3hat(k)+mu(4hat(i)+2hat(j)+4hat(k)) L_3:=3hat(i)+2hat(j)-2hat(k)+t(2hat(i)+hat(j)+2hat(k)) Then, which one of the following part(s) is/ are in the same plane?

The position vectors of three particles of mass m_(1) = 1kg, m_(2) = 2kg and m_(3) = 3kg are r_(1) = ((hat(i) + 4hat(j) +hat(k)) m, r_(2) = ((hat(i)+(hat(j)+hat(k)) m and r_(3) = (2hat(i) - (hat(j) -(hat(2k)) m, respectively. Find the position vector of their center of mass.

If a=hat(i)+hat(j)-hat(k), b=2hat(i)+hat(j)-3hat(k) and r is a vector satisfying 2r+rtimesa=b . Statement-I r can be expressed in terms of a, b and axxb . Statement-II r=(1)/(7)(7hat(i)+5hat(j)-9hat(k)+atimesb) .

If the planes overset(to)( r) (2 hat(i) - lambda (j) + 3 hat(k) ) = 0 and overset(to)( r) ( lambda (i) + 5 hat(j) - hat(k) )=5 are perpendicular to each other, then the value of lambda is

If the line -> r=\ ( hat i-2 hat j+ hat k)+lambda(2 hat i+ hat j+2 hat k) is parallel to the plane -> r. dot ((3 hat i-2 hat j+m hat k)) =14 , find the value of mdot

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If the angle between the vectors a and b be theta and a*b=costheta the...

    Text Solution

    |

  2. If the vectors hat(i)+hat(j)+hat(k) makes angle alpha, beta and gamma ...

    Text Solution

    |

  3. (r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))^(2) is equal to

    Text Solution

    |

  4. If hat a and hatb are two unit vectors inclined at an angle theta, the...

    Text Solution

    |

  5. If vec A=4 hat i+6 hat ja n d vec B=3 hat j+4 hat k , then find the c...

    Text Solution

    |

  6. If vectors a=2hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  7. If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{...

    Text Solution

    |

  8. The moment of the force F acting at a point P, about the point C is

    Text Solution

    |

  9. The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about th...

    Text Solution

    |

  10. A force of magnitude 6 acts along the vector (9, 6, -2) and passes thr...

    Text Solution

    |

  11. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  12. If a, b and c are any three vectors and their inverse are a^(-1), b^(-...

    Text Solution

    |

  13. If a, b and c are three non-coplanar vectors, then find the value of (...

    Text Solution

    |

  14. atimes(btimesc) is coplanar with

    Text Solution

    |

  15. If u=hat(i)(atimeshat(i))+hat(j)(atimeshat(j))+hat(k)(atimeshat(k)), t...

    Text Solution

    |

  16. If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat...

    Text Solution

    |

  17. If atimes(btimesc)=0, then

    Text Solution

    |

  18. A vectors which makes equal angles with the vectors 1/3(hati - 2hatj ...

    Text Solution

    |

  19. [Find by vector method the horizontal force and the force inclined at ...

    Text Solution

    |

  20. If x+y+z=0, |x|=|y|=|z|=2 and theta is angle between y and z, then the...

    Text Solution

    |