Home
Class 12
MATHS
If vectors a=2hat(i)-3hat(j)+6hat(k) and...

If vectors `a=2hat(i)-3hat(j)+6hat(k)` and vector `b=-2hat(i)+2hat(j)-hat(k)`, then (projection of vector a on b vectors)/(projection of vector b on a vector) is equal to

A

`(3)/(7)`

B

`(7)/(3)`

C

`3`

D

`7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the projection of vector **a** on vector **b** to the projection of vector **b** on vector **a**. Given: - **a** = \(2\hat{i} - 3\hat{j} + 6\hat{k}\) - **b** = \(-2\hat{i} + 2\hat{j} - \hat{k}\) ### Step 1: Calculate the dot product of vectors **a** and **b**. The dot product of two vectors **a** and **b** is given by: \[ \mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z \] For our vectors: \[ \mathbf{a} \cdot \mathbf{b} = (2)(-2) + (-3)(2) + (6)(-1) = -4 - 6 - 6 = -16 \] ### Step 2: Calculate the magnitude of vector **a**. The magnitude of vector **a** is given by: \[ |\mathbf{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \] Calculating for vector **a**: \[ |\mathbf{a}| = \sqrt{2^2 + (-3)^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7 \] ### Step 3: Calculate the magnitude of vector **b**. The magnitude of vector **b** is given by: \[ |\mathbf{b}| = \sqrt{b_x^2 + b_y^2 + b_z^2} \] Calculating for vector **b**: \[ |\mathbf{b}| = \sqrt{(-2)^2 + 2^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 4: Calculate the projection of vector **a** on vector **b**. The projection of vector **a** on vector **b** is given by: \[ \text{proj}_{\mathbf{b}} \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2} \mathbf{b} \] We need the ratio of projections: \[ \frac{\text{proj}_{\mathbf{b}} \mathbf{a}}{\text{proj}_{\mathbf{a}} \mathbf{b}} = \frac{\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|^2}}{\frac{\mathbf{b} \cdot \mathbf{a}}{|\mathbf{a}|^2}} \] Since \(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}\), we can simplify: \[ \frac{\text{proj}_{\mathbf{b}} \mathbf{a}}{\text{proj}_{\mathbf{a}} \mathbf{b}} = \frac{|\mathbf{a}|^2}{|\mathbf{b}|^2} \] ### Step 5: Substitute the magnitudes into the ratio. Now substituting the magnitudes we calculated: \[ \frac{|\mathbf{a}|^2}{|\mathbf{b}|^2} = \frac{7^2}{3^2} = \frac{49}{9} \] ### Final Answer Thus, the ratio of the projection of vector **a** on vector **b** to the projection of vector **b** on vector **a** is: \[ \frac{49}{9} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Let vector be the 2hat(i)+hat(j)-hat(k) then find the unit vector in the direction of a vector

Find the projection of the vector hat i- hat j on the vector hat i+ hat j

Write the projection of the vector hat i- hat j on the vector hat i+ hat j

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

Write the projection of vector hat i+ hat j+ hat k along the vector hat j .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If hat a and hatb are two unit vectors inclined at an angle theta, the...

    Text Solution

    |

  2. If vec A=4 hat i+6 hat ja n d vec B=3 hat j+4 hat k , then find the c...

    Text Solution

    |

  3. If vectors a=2hat(i)-3hat(j)+6hat(k) and vector b=-2hat(i)+2hat(j)-hat...

    Text Solution

    |

  4. If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{...

    Text Solution

    |

  5. The moment of the force F acting at a point P, about the point C is

    Text Solution

    |

  6. The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about th...

    Text Solution

    |

  7. A force of magnitude 6 acts along the vector (9, 6, -2) and passes thr...

    Text Solution

    |

  8. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  9. If a, b and c are any three vectors and their inverse are a^(-1), b^(-...

    Text Solution

    |

  10. If a, b and c are three non-coplanar vectors, then find the value of (...

    Text Solution

    |

  11. atimes(btimesc) is coplanar with

    Text Solution

    |

  12. If u=hat(i)(atimeshat(i))+hat(j)(atimeshat(j))+hat(k)(atimeshat(k)), t...

    Text Solution

    |

  13. If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat...

    Text Solution

    |

  14. If atimes(btimesc)=0, then

    Text Solution

    |

  15. A vectors which makes equal angles with the vectors 1/3(hati - 2hatj ...

    Text Solution

    |

  16. [Find by vector method the horizontal force and the force inclined at ...

    Text Solution

    |

  17. If x+y+z=0, |x|=|y|=|z|=2 and theta is angle between y and z, then the...

    Text Solution

    |

  18. The values of x for which the angle between the vectors veca = xhati -...

    Text Solution

    |

  19. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  20. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |