Home
Class 12
MATHS
If u=hat(i)(atimeshat(i))+hat(j)(atimesh...

If `u=hat(i)(atimeshat(i))+hat(j)(atimeshat(j))+hat(k)(atimeshat(k))`, then

A

`u=0`

B

`u=hat(i)+hat(j)+hat(k)`

C

`u=2a`

D

`u=a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given for the vector \( \mathbf{u} \): \[ \mathbf{u} = \hat{i} (\mathbf{a} \times \hat{i}) + \hat{j} (\mathbf{a} \times \hat{j}) + \hat{k} (\mathbf{a} \times \hat{k}) \] ### Step 1: Understand the Cross Product The cross product of any vector with itself is zero. Hence, we have: \[ \mathbf{a} \times \hat{i} = 0 \quad \text{(since } \hat{i} \times \hat{i} = 0\text{)} \] \[ \mathbf{a} \times \hat{j} = 0 \quad \text{(since } \hat{j} \times \hat{j} = 0\text{)} \] \[ \mathbf{a} \times \hat{k} = 0 \quad \text{(since } \hat{k} \times \hat{k} = 0\text{)} \] ### Step 2: Substitute the Cross Products Now, substituting these results back into the expression for \( \mathbf{u} \): \[ \mathbf{u} = \hat{i} (0) + \hat{j} (0) + \hat{k} (0) = \mathbf{0} \] ### Step 3: Conclusion Thus, we find that: \[ \mathbf{u} = \mathbf{0} \] ### Final Answer The vector \( \mathbf{u} \) is equal to the zero vector.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The value of hat(i).(hat(j) xx hat(k))+ hat(j). (hat(i) xxhat(k)) + hat(k) . (hat(i) xx hat(j))

If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j) , then the vectors (a*hat(i))hat(i)+(a*hat(j))hat(j)+(a*hat(k))hat(k), (b*hat(i))hat(i)+(b*hat(j))hat(j)+(b*hat(k))hat(k) and hat(i)+hat(j)-2hat(k)

The sum of the distinct real values of μ for which the vectors, muhat(i)+hat(j)+hat(k),hat(i)+muhat(j)+hat(k),hat(i)+hat(j)+muhat(k) are co-planar is :

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k) . Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If a, b and c are three non-coplanar vectors, then find the value of (...

    Text Solution

    |

  2. atimes(btimesc) is coplanar with

    Text Solution

    |

  3. If u=hat(i)(atimeshat(i))+hat(j)(atimeshat(j))+hat(k)(atimeshat(k)), t...

    Text Solution

    |

  4. If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat...

    Text Solution

    |

  5. If atimes(btimesc)=0, then

    Text Solution

    |

  6. A vectors which makes equal angles with the vectors 1/3(hati - 2hatj ...

    Text Solution

    |

  7. [Find by vector method the horizontal force and the force inclined at ...

    Text Solution

    |

  8. If x+y+z=0, |x|=|y|=|z|=2 and theta is angle between y and z, then the...

    Text Solution

    |

  9. The values of x for which the angle between the vectors veca = xhati -...

    Text Solution

    |

  10. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  11. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |

  12. Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k...

    Text Solution

    |

  13. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  14. For two particular vectors vec A and vec B it is known that vec A xx ...

    Text Solution

    |

  15. For some non zero vector vecv, if the sum of vecv and the vector obtai...

    Text Solution

    |

  16. In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divid...

    Text Solution

    |

  17. Given an equilateral triangle ABC with side length equal to 'a'. Let M...

    Text Solution

    |

  18. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  19. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  20. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |