Home
Class 12
MATHS
If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-h...

If `a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k)`, then `atimes(btimesc)` is equal to

A

`20hat(i)-3hat(j)+7hat(k)`

B

`20hat(i)-3hat(j)-7hat(k)`

C

`20hat(i)+3hat(j)-7hat(k)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the vector triple product \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \). The formula for the vector triple product is given by: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] ### Step 1: Define the vectors Given: \[ \mathbf{a} = \hat{i} + 2\hat{j} - 2\hat{k} \] \[ \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \mathbf{c} = \hat{i} + 3\hat{j} - \hat{k} \] ### Step 2: Calculate \( \mathbf{a} \cdot \mathbf{b} \) Using the dot product formula: \[ \mathbf{a} \cdot \mathbf{b} = (1)(2) + (2)(-1) + (-2)(1) \] Calculating this: \[ = 2 - 2 - 2 = -2 \] ### Step 3: Calculate \( \mathbf{a} \cdot \mathbf{c} \) Now, calculate \( \mathbf{a} \cdot \mathbf{c} \): \[ \mathbf{a} \cdot \mathbf{c} = (1)(1) + (2)(3) + (-2)(-1) \] Calculating this: \[ = 1 + 6 + 2 = 9 \] ### Step 4: Substitute into the vector triple product formula Now substitute the dot products into the formula: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (9) \mathbf{b} - (-2) \mathbf{c} \] This simplifies to: \[ = 9\mathbf{b} + 2\mathbf{c} \] ### Step 5: Calculate \( 9\mathbf{b} \) and \( 2\mathbf{c} \) Calculating \( 9\mathbf{b} \): \[ 9\mathbf{b} = 9(2\hat{i} - \hat{j} + \hat{k}) = 18\hat{i} - 9\hat{j} + 9\hat{k} \] Calculating \( 2\mathbf{c} \): \[ 2\mathbf{c} = 2(\hat{i} + 3\hat{j} - \hat{k}) = 2\hat{i} + 6\hat{j} - 2\hat{k} \] ### Step 6: Add the two results Now, combine the results: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (18\hat{i} - 9\hat{j} + 9\hat{k}) + (2\hat{i} + 6\hat{j} - 2\hat{k}) \] Calculating this: \[ = (18 + 2)\hat{i} + (-9 + 6)\hat{j} + (9 - 2)\hat{k} \] \[ = 20\hat{i} - 3\hat{j} + 7\hat{k} \] ### Final Answer Thus, the result of \( \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \) is: \[ \boxed{20\hat{i} - 3\hat{j} + 7\hat{k}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k) . Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

Let a=alphahat(i)+2hat(j)-3hat(k), b=hat(i)+2alphahat(j)-2hat(k) and c=2hat(i)-alphahat(j)+hat(k) . Then the value of 6alpha , such that {(atimesb)times(btimesc)}times(ctimesa)=a , is

Examine whether the vectors a=2hat(i)+3hat(j)+2hat(k), b=hat(i)-hat(j)+2hat(k) and c=4hat(i)+2hat(j)+4hat(k) form a left handed or a right handed system.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. atimes(btimesc) is coplanar with

    Text Solution

    |

  2. If u=hat(i)(atimeshat(i))+hat(j)(atimeshat(j))+hat(k)(atimeshat(k)), t...

    Text Solution

    |

  3. If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat...

    Text Solution

    |

  4. If atimes(btimesc)=0, then

    Text Solution

    |

  5. A vectors which makes equal angles with the vectors 1/3(hati - 2hatj ...

    Text Solution

    |

  6. [Find by vector method the horizontal force and the force inclined at ...

    Text Solution

    |

  7. If x+y+z=0, |x|=|y|=|z|=2 and theta is angle between y and z, then the...

    Text Solution

    |

  8. The values of x for which the angle between the vectors veca = xhati -...

    Text Solution

    |

  9. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  10. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |

  11. Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k...

    Text Solution

    |

  12. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  13. For two particular vectors vec A and vec B it is known that vec A xx ...

    Text Solution

    |

  14. For some non zero vector vecv, if the sum of vecv and the vector obtai...

    Text Solution

    |

  15. In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divid...

    Text Solution

    |

  16. Given an equilateral triangle ABC with side length equal to 'a'. Let M...

    Text Solution

    |

  17. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  18. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  19. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  20. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |