Home
Class 12
MATHS
If a, b and c are non-coplanar vectors a...

If a, b and c are non-coplanar vectors and `d=lambdaa+mub+nuc`, then `lambda` is equal to

A

`([d b c])/([b a c])`

B

`([b c d])/([b c a])`

C

`([b d c])/([a b c])`

D

`([c b d])/([a b c])`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) in the equation \( \mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c} \), where \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are non-coplanar vectors, we can follow these steps: ### Step 1: Write the given equation We start with the equation: \[ \mathbf{d} = \lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c} \] ### Step 2: Take the dot product with \( \mathbf{b} \times \mathbf{c} \) Next, we take the dot product of both sides of the equation with \( \mathbf{b} \times \mathbf{c} \): \[ \mathbf{d} \cdot (\mathbf{b} \times \mathbf{c}) = (\lambda \mathbf{a} + \mu \mathbf{b} + \nu \mathbf{c}) \cdot (\mathbf{b} \times \mathbf{c}) \] ### Step 3: Simplify the right-hand side Using the properties of the dot product, we can simplify the right-hand side: \[ \mathbf{d} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) + \mu (\mathbf{b} \cdot (\mathbf{b} \times \mathbf{c})) + \nu (\mathbf{c} \cdot (\mathbf{b} \times \mathbf{c})) \] Since \( \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \) and \( \mathbf{c} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \), we have: \[ \mathbf{d} \cdot (\mathbf{b} \times \mathbf{c}) = \lambda (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) \] ### Step 4: Solve for \( \lambda \) Now, we can isolate \( \lambda \): \[ \lambda = \frac{\mathbf{d} \cdot (\mathbf{b} \times \mathbf{c})}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})} \] ### Step 5: Reorganize the expression We can express this in terms of scalar triple products. The scalar triple product \( [\mathbf{a}, \mathbf{b}, \mathbf{c}] \) can be represented as: \[ \lambda = \frac{[\mathbf{d}, \mathbf{b}, \mathbf{c}]}{[\mathbf{a}, \mathbf{b}, \mathbf{c}]} \] ### Conclusion Thus, the final expression for \( \lambda \) is: \[ \lambda = \frac{[\mathbf{b}, \mathbf{c}, \mathbf{d}]}{[\mathbf{b}, \mathbf{c}, \mathbf{a}]} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb , vecc are non-coplanar vectors and lambda is a real number then [ lambda(veca+vecb) lambda^2vecb lambdavecc ] = [ veca vecb+vecc vecb ] for:

If vec a , vec b , vec c are non-coplanar vector and lambda is a real number, then the vectors vec a+2 vec b+3 vec c ,lambda vec b+mu vec ca n d(2lambda-1) vec c are coplanar when a. mu in R b. lambda=1/2 c. lambda=0 d. no value of lambda

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vec and (2lamda-1)vecc are non coplanar for

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then the vectors veca+2vecb+3vecc, lamdavecb+4vecc and (2lamda-1)vecc are non coplanar for

If a,b and c be any three non-zero and non-coplanar vectors, then any vector r is equal to where, x=([rbc])/([abc]),y=([rca])/([abc]),z=([rab])/([abc])

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.

If a,b,c are three non-coplanar vectors, then 3a-7b-4c,3a-2b+c and a+b+lamdac will be coplanar, if lamda is

Let a , b and c be non-coplanar unit vectors equally inclined to one another at an acute angle θ then [ a b c ] in terms of θ is equal to :

p=2a-3b,q=a-2b+c and r=-3a+b+2c , where a,b,c being non-coplanar vectors, then the vector -2a+3b-c is equal to

If a, b and c are three non-coplanar vectors, then find the value of (a*(btimesc))/(ctimes(a*b))+(b*(ctimesa))/(c*(atimesb)) .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If x+y+z=0, |x|=|y|=|z|=2 and theta is angle between y and z, then the...

    Text Solution

    |

  2. The values of x for which the angle between the vectors veca = xhati -...

    Text Solution

    |

  3. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  4. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |

  5. Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k...

    Text Solution

    |

  6. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  7. For two particular vectors vec A and vec B it is known that vec A xx ...

    Text Solution

    |

  8. For some non zero vector vecv, if the sum of vecv and the vector obtai...

    Text Solution

    |

  9. In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divid...

    Text Solution

    |

  10. Given an equilateral triangle ABC with side length equal to 'a'. Let M...

    Text Solution

    |

  11. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  12. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  13. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  14. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |

  15. Let vec a= hat j+hat j,vec b=hat j+hat k and vec c=alpha vec a+beta v...

    Text Solution

    |

  16. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  17. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  18. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  19. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  20. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |