Home
Class 12
MATHS
If the vectors 3 vec p + vec q; 5 vec p ...

If the vectors `3 vec p + vec q`; `5 vec p - 3 vecq` and `2 vec p + vec q`; `4 vec p - 2 vec q` are pairs of mutually perpendicular then sin( `vec p`,`vec q)` is :

A

a) `(sqrt(55))/(4)`

B

b) `(sqrt(55))/(8)`

C

c) `(3)/(16)`

D

d) `(sqrt(247))/(16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sine of the angle between two vectors \(\vec{p}\) and \(\vec{q}\) given that certain pairs of vectors formed from these are mutually perpendicular. ### Step-by-Step Solution: 1. **Identify the vectors**: We have two pairs of vectors: - Pair 1: \( \vec{A} = 3\vec{p} + \vec{q} \) and \( \vec{B} = 5\vec{p} - 3\vec{q} \) - Pair 2: \( \vec{C} = 2\vec{p} + \vec{q} \) and \( \vec{D} = 4\vec{p} - 2\vec{q} \) 2. **Set up the first dot product**: Since \(\vec{C}\) and \(\vec{D}\) are perpendicular, we have: \[ \vec{C} \cdot \vec{D} = 0 \] This gives: \[ (2\vec{p} + \vec{q}) \cdot (4\vec{p} - 2\vec{q}) = 0 \] 3. **Calculate the dot product**: \[ 2\vec{p} \cdot 4\vec{p} + 2\vec{p} \cdot (-2\vec{q}) + \vec{q} \cdot 4\vec{p} + \vec{q} \cdot (-2\vec{q}) = 0 \] This simplifies to: \[ 8|\vec{p}|^2 - 4\vec{p} \cdot \vec{q} + 4\vec{p} \cdot \vec{q} - 2|\vec{q}|^2 = 0 \] Thus: \[ 8|\vec{p}|^2 - 2|\vec{q}|^2 = 0 \] 4. **Rearranging the equation**: \[ 8|\vec{p}|^2 = 2|\vec{q}|^2 \implies 4|\vec{p}|^2 = |\vec{q}|^2 \] This implies: \[ |\vec{q}| = 2|\vec{p}| \] (Mark this as Equation 1) 5. **Set up the second dot product**: Now consider the second pair: \[ \vec{A} \cdot \vec{B} = 0 \] This gives: \[ (3\vec{p} + \vec{q}) \cdot (5\vec{p} - 3\vec{q}) = 0 \] 6. **Calculate the dot product**: \[ 3\vec{p} \cdot 5\vec{p} + 3\vec{p} \cdot (-3\vec{q}) + \vec{q} \cdot 5\vec{p} + \vec{q} \cdot (-3\vec{q}) = 0 \] This simplifies to: \[ 15|\vec{p}|^2 - 9\vec{p} \cdot \vec{q} + 5\vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] Thus: \[ 15|\vec{p}|^2 - 4\vec{p} \cdot \vec{q} - 3|\vec{q}|^2 = 0 \] 7. **Substituting Equation 1 into the second equation**: Substitute \( |\vec{q}|^2 = 4|\vec{p}|^2 \): \[ 15|\vec{p}|^2 - 4\vec{p} \cdot \vec{q} - 3(4|\vec{p}|^2) = 0 \] This simplifies to: \[ 15|\vec{p}|^2 - 4\vec{p} \cdot \vec{q} - 12|\vec{p}|^2 = 0 \] Thus: \[ 3|\vec{p}|^2 = 4\vec{p} \cdot \vec{q} \implies \vec{p} \cdot \vec{q} = \frac{3}{4}|\vec{p}|^2 \] (Mark this as Equation 2) 8. **Finding cosine of the angle**: The dot product can also be expressed as: \[ \vec{p} \cdot \vec{q} = |\vec{p}||\vec{q}|\cos(\theta) \] Substituting from Equation 1: \[ \frac{3}{4}|\vec{p}|^2 = |\vec{p}|(2|\vec{p}|)\cos(\theta) \] Simplifying gives: \[ \frac{3}{4}|\vec{p}|^2 = 2|\vec{p}|^2\cos(\theta) \implies \cos(\theta) = \frac{3}{8} \] 9. **Finding sine of the angle**: Using the identity \( \sin^2(\theta) + \cos^2(\theta) = 1 \): \[ \sin^2(\theta) = 1 - \left(\frac{3}{8}\right)^2 = 1 - \frac{9}{64} = \frac{55}{64} \] Thus: \[ \sin(\theta) = \sqrt{\frac{55}{64}} = \frac{\sqrt{55}}{8} \] ### Final Answer: \[ \sin(\theta) = \frac{\sqrt{55}}{8} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If the vectors 3 vec p+ vec q ;5p-3 vec qa n d2 vec p+ vec q ;4 vec p-2 vec q are pairs of mutually perpendicular vectors, then find the angle between vectors vec pa n d vec qdot

If vec a , vec b , vec c are mutually perpendicular unit vectors, find |2 vec a+ vec b+ vec c|dot

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to (a) 2| vec p . vec q| (b) (1//2)| vec p . vec q| (c) | vec pxx vec q| (d) | vec p . vec q|

Show that the four points P ,\ Q ,\ R ,\ S with position vectors vec p ,\ vec q ,\ vec r ,\ vec s respectively such that 5 vec p-2 vec q+6 vec r-9 vec s= vec0, are coplanar. Also find the position vector of the point of intersection of the line segments PR and QS.

If the two adjacent sides of two rectangles are represented by vectors vec p=5 vec a-3 vec b ; vec q=- vec a-2 vec b \ and \ vec r=-4 vec a- vec b ; vec s=- vec a+ vec b , respectively, then the angel between the vector vec x=1/3( vec p+ vec r+ vec s) \ and \ vec y=1/5( vec r+ vec s) is a. -cos^(-1)((19)/(5sqrt(43))) b. cos^(-1)((19)/(5sqrt(43))) c. pi-cos^(-1)((19)/(5sqrt(43))) d. cannot be evaluate

If vec a ,\ vec b ,\ vec c are three mutually perpendicular unit vectors, then prove that | vec a+ vec b+ vec c|=sqrt(3)

Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p""a n d""/_B A D be an acute angle. If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD, then vec r is given by (1) vec r=3 vec q-(3( vec pdot vec q))/(( vec pdot vec p)) vec p (2) vec r=- vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (3) vec r= vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (4) vec r=-3 vec q+(3( vec pdot vec q))/(( vec pdot vec p)) vec p

If vec p is a unit vector and ( vec x-\ vec p).( vec x+\ vec p)=80 , then find | vec x|

vec a , vec b , vec c are three coplanar unit vectors such that vec a+ vec b+ vec c=0. If three vectors vec p , vec q ,a n d vec r are parallel to vec a , vec b ,a n d vec c , respectively, and have integral but different magnitudes, then among the following options, | vec p+ vec q+ vec r| can take a value equal to a. 1 b. 0 c. sqrt(3) d. 2

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. The values of x for which the angle between the vectors veca = xhati -...

    Text Solution

    |

  2. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  3. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |

  4. Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k...

    Text Solution

    |

  5. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  6. For two particular vectors vec A and vec B it is known that vec A xx ...

    Text Solution

    |

  7. For some non zero vector vecv, if the sum of vecv and the vector obtai...

    Text Solution

    |

  8. In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divid...

    Text Solution

    |

  9. Given an equilateral triangle ABC with side length equal to 'a'. Let M...

    Text Solution

    |

  10. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  11. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  12. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  13. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |

  14. Let vec a= hat j+hat j,vec b=hat j+hat k and vec c=alpha vec a+beta v...

    Text Solution

    |

  15. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  16. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  17. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  18. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  19. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  20. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |