Home
Class 12
MATHS
Given a parallelogram ABCD. If |vec(AB)|...

Given a parallelogram `ABCD`. If `|vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c` , then ` vec(DB) . vec(AB)` has the value

A

`(3a^(2)+b^(2)-c^(2))/(2)`

B

`(a^(2)+3b^(2)-c^(2))/(2)`

C

`(a^(2)-b^(2)+3c^(2))/(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{DB} \cdot \vec{AB} \) in the context of the parallelogram \( ABCD \) where \( |\vec{AB}| = a \), \( |\vec{AD}| = b \), and \( |\vec{AC}| = c \). ### Step-by-Step Solution: 1. **Understanding the Parallelogram**: - We have a parallelogram \( ABCD \) with sides \( \vec{AB} \) and \( \vec{AD} \). - The diagonals are \( \vec{AC} \) and \( \vec{DB} \). 2. **Using Vector Properties**: - From the properties of a parallelogram, we know that: \[ \vec{DB} = \vec{DA} + \vec{AB} \] - Rearranging gives: \[ \vec{DA} = \vec{DB} - \vec{AB} \] 3. **Squaring the Equation**: - Squaring both sides: \[ |\vec{DA}|^2 = |\vec{DB} - \vec{AB}|^2 \] - Expanding the right-hand side using the formula \( |\vec{X} - \vec{Y}|^2 = |\vec{X}|^2 + |\vec{Y}|^2 - 2\vec{X} \cdot \vec{Y} \): \[ |\vec{DA}|^2 = |\vec{DB}|^2 + |\vec{AB}|^2 - 2\vec{DB} \cdot \vec{AB} \] 4. **Substituting Known Values**: - We know that \( |\vec{AB}| = a \) and \( |\vec{AD}| = b \), so \( |\vec{DA}|^2 = b^2 \). - Let’s denote \( |\vec{DB}|^2 \) as \( x \): \[ b^2 = x + a^2 - 2\vec{DB} \cdot \vec{AB} \] 5. **Using the Diagonal Property**: - The property of the parallelogram states: \[ 2(|\vec{AB}|^2 + |\vec{AD}|^2) = |\vec{AC}|^2 + |\vec{DB}|^2 \] - Substituting the known values: \[ 2(a^2 + b^2) = c^2 + x \] - Rearranging gives: \[ x = 2a^2 + 2b^2 - c^2 \] 6. **Substituting Back**: - Now substitute \( x \) back into the equation for \( b^2 \): \[ b^2 = (2a^2 + 2b^2 - c^2) + a^2 - 2\vec{DB} \cdot \vec{AB} \] - Simplifying gives: \[ b^2 = 3a^2 + b^2 - c^2 - 2\vec{DB} \cdot \vec{AB} \] - Thus, we can isolate \( \vec{DB} \cdot \vec{AB} \): \[ 0 = 3a^2 - c^2 - 2\vec{DB} \cdot \vec{AB} \] - Rearranging gives: \[ 2\vec{DB} \cdot \vec{AB} = 3a^2 + b^2 - c^2 \] 7. **Final Result**: - Therefore, we can express \( \vec{DB} \cdot \vec{AB} \) as: \[ \vec{DB} \cdot \vec{AB} = \frac{3a^2 + b^2 - c^2}{2} \] ### Conclusion: The value of \( \vec{DB} \cdot \vec{AB} \) is: \[ \boxed{\frac{3a^2 + b^2 - c^2}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

In a parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC)

vec(AC) and vec(BD) are the diagonals of a parallelogram ABCD. Prove that (i) vec(AC) + vec(BD) - 2 vec(BC) (ii) vec(AC) - vec(BD) - 2vec(AB)

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(b) then vec(OA) is equal to

Given that vec(A)+vec(B)=vec(C ) . If |vec(A)|=4, |vec(B)|=5 and |vec(C )|=sqrt(61) , the angle between vec(A) and vec(B) is

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. If the vectors 3 vec p + vec q; 5 vec p - 3 vecq and 2 vec p + vec q; ...

    Text Solution

    |

  2. Let vec u=hat i+hat j,vec v=hat i-hat j and vec w=hat i+2 hat j+3hat k...

    Text Solution

    |

  3. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  4. For two particular vectors vec A and vec B it is known that vec A xx ...

    Text Solution

    |

  5. For some non zero vector vecv, if the sum of vecv and the vector obtai...

    Text Solution

    |

  6. In isosceles triangles A B C ,| vec A B|=| vec B C|=8, a point E divid...

    Text Solution

    |

  7. Given an equilateral triangle ABC with side length equal to 'a'. Let M...

    Text Solution

    |

  8. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  9. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  10. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  11. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |

  12. Let vec a= hat j+hat j,vec b=hat j+hat k and vec c=alpha vec a+beta v...

    Text Solution

    |

  13. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  14. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  15. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  16. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  17. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  18. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  19. If vector vec i+ 2vec j + 2vec k is rotated through an angle of 90^@...

    Text Solution

    |

  20. 10 different vectors are lying on a plane out of which four are parall...

    Text Solution

    |