Home
Class 12
MATHS
Given the vectors vec u=2 hat i-hat j-h...

Given the vectors `vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2hat k and vec w=hat i-hat k` If the volume of the parallelopiped having `- cvec u,vec v and c vec w` as concurrent edges, is 8 then `c` can be equal to

A

a) `pm2`

B

b) `4`

C

c) `8`

D

d) cannot be determine

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the outlined procedure to find the value of \( c \) such that the volume of the parallelepiped formed by the vectors \( -c\vec{u}, \vec{v}, \) and \( c\vec{w} \) equals 8. ### Step 1: Define the vectors We are given the vectors: \[ \vec{u} = 2\hat{i} - \hat{j} - \hat{k} \] \[ \vec{v} = \hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{w} = \hat{i} - \hat{k} \] ### Step 2: Express the modified vectors We need to express the vectors \( -c\vec{u}, \vec{v}, \) and \( c\vec{w} \): \[ -c\vec{u} = -c(2\hat{i} - \hat{j} - \hat{k}) = -2c\hat{i} + c\hat{j} + c\hat{k} \] \[ \vec{v} = \hat{i} - \hat{j} + 2\hat{k} \] \[ c\vec{w} = c(\hat{i} - \hat{k}) = c\hat{i} - c\hat{k} \] ### Step 3: Set up the volume formula The volume \( V \) of the parallelepiped formed by the vectors \( \vec{a}, \vec{b}, \vec{c} \) is given by the scalar triple product: \[ V = |\vec{a} \cdot (\vec{b} \times \vec{c})| \] In this case, we can write: \[ V = |(-c\vec{u}) \cdot (\vec{v} \times (c\vec{w}))| \] This can be simplified to: \[ V = |(-c) \cdot \text{det}(-2c, 1, c; 1, -1, 0; 1, 2, -1)| \] ### Step 4: Calculate the determinant We need to calculate the determinant: \[ \text{det} \begin{pmatrix} -2c & c & c \\ 1 & -1 & 2 \\ 1 & 0 & -1 \end{pmatrix} \] ### Step 5: Simplify the determinant We can factor out \( c \) from the first row and the third row: \[ = c^2 \cdot \text{det} \begin{pmatrix} -2 & 1 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & -1 \end{pmatrix} \] Now we calculate the determinant: \[ = -2 \cdot \text{det} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} + 1 \cdot \text{det} \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} + 1 \cdot \text{det} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \] Calculating these: 1. \(\text{det} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = (-1)(-1) - (2)(1) = 1 - 2 = -1\) 2. \(\text{det} \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} = (1)(-1) - (2)(0) = -1\) 3. \(\text{det} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = (1)(1) - (-1)(0) = 1\) So, the determinant becomes: \[ = -2(-1) + 1(-1) + 1(1) = 2 - 1 + 1 = 2 \] ### Step 6: Set the volume equal to 8 Now we have: \[ V = |c^2 \cdot 2| = 8 \] This simplifies to: \[ 2c^2 = 8 \implies c^2 = 4 \implies c = \pm 2 \] ### Conclusion Thus, the possible values of \( c \) are: \[ \boxed{\pm 2} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Show that the vectors vec a=-2 hat i-2 hat j+4 hat k ,\ vec b=-2 hat i+4 hat j-2 hat k\ a n d\ vec c=4 hat i-2 hat j-2 hat k are coplanar.

Show that the vectors vec a=3 hat i-2 hat j+ hat k , vec b= hat i+3 hat j+5 hat k , vec c=2 hat i+ hat j-4 hat k form a right angled triangle.

Show that the vectors vec a=3 hat i-2 hat j+ hat k ,\ vec b= hat i-3 hat j+5 hat k ,\ vec c=2 hat i+ hat j-4 hat k form a right angled triangle.

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

If vec a=2 hat i+ hat k ,\ vec b= hat i+ hat j+ hat k , find the magnitude of vec axx vec bdot

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Single Option Correct Type Questions)
  1. In a quadrilateral ABCD, AC is the bisector of the (AB, AD) which is (...

    Text Solution

    |

  2. If the distance from the point P(1, 1, 1) to the line passing through ...

    Text Solution

    |

  3. Given the vectors vec u=2 hat i-hat j-hat k and vec v=hat i-hat j+2ha...

    Text Solution

    |

  4. Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec ...

    Text Solution

    |

  5. Let vec a= hat j+hat j,vec b=hat j+hat k and vec c=alpha vec a+beta v...

    Text Solution

    |

  6. A rigid body rotates about an axis through the origin with an angular ...

    Text Solution

    |

  7. A rigid body rotates with constant angular velocity omaga about the li...

    Text Solution

    |

  8. Consider DeltaABC with A=(veca);B=(vecb) and C=(vecc). If vecb.(veca+v...

    Text Solution

    |

  9. Given unit vectors m, n and p such that angle between m and n. Angle b...

    Text Solution

    |

  10. If veca and vecb are two unit vectors, then the vector (veca+vecb)xx(v...

    Text Solution

    |

  11. If veca and vecb are othogonal unit vectors, then for a vector vecr no...

    Text Solution

    |

  12. If vector vec i+ 2vec j + 2vec k is rotated through an angle of 90^@...

    Text Solution

    |

  13. 10 different vectors are lying on a plane out of which four are parall...

    Text Solution

    |

  14. If hat(a) is a unit vector and projection of x along hat(a) is 2 units...

    Text Solution

    |

  15. If a, b and c are any three non-zero vectors, then the component of at...

    Text Solution

    |

  16. The position vector of a point P is vecr=xhat(i)+yhat(j)+zhat(k), wher...

    Text Solution

    |

  17. . Let a, b > 0 and vecalpha=hati/a+4hatj/b+bhatk and beta=bhati+ahatj+...

    Text Solution

    |

  18. If veca, vecb and vecc are any three vectors forming a linearly indepe...

    Text Solution

    |

  19. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  20. If in a triangleABC, BC=(e)/(|e|)-(f)/(|f|) and AC=(2e)/(|e|): |e|ne|f...

    Text Solution

    |